A series of novel luminescent materials, SrZnO2:M (M=Eu3+, or Eu3+ + Li+) have been synthesized by high-temperature solid-state reaction. The structure and luminescence properties of SrZnO2:Eu3+ phosphor were studied ...A series of novel luminescent materials, SrZnO2:M (M=Eu3+, or Eu3+ + Li+) have been synthesized by high-temperature solid-state reaction. The structure and luminescence properties of SrZnO2:Eu3+ phosphor were studied through XRD, photoluminescence and Raman spectroscopy. The excitation spectra show a broad intense band and a number of small peaks corresponding to the inner 4f-shell excitations of Eu3+ (the strongest one is at 395 nm for 7F0-5L6). After SrZnO2:Eu3+ phosphor was co-doped with Li+ ions, its charge transfer band extended to longer wavelengths. This resulted in increase of luminescent quantum efficiency of the sample. SrZnO2:Eu3+,Li+ phosphor can be efficiently excited by longer UV. From the fluorescence spectrum of SrZnO2:Eu3+ phosphor, apart from transition emissions of 5D0 → 7FJ (J=0~4), the transition emissions from 5D1 → 7FJ (J=0~2) have been observed. For the SrZnO2:Eu3+ phosphor, under excitation of UV, the dominant emission is at about 612 nm, due to the 5D0 → 7F2 hypersensitive transition. The incorporation of Li+ ions greatly enhanced the luminescence intensity and made emission peak from 5D0 → 7F2 transition red-shifted.展开更多
Cuprous oxide(Cu2O) hexapodal branch structure with high uniformity was prepared by a solution phase route using sodium dodecyl sulfate as a capping agent.The shapes of Cu2O crystal(flower-like structure,nanocube and ...Cuprous oxide(Cu2O) hexapodal branch structure with high uniformity was prepared by a solution phase route using sodium dodecyl sulfate as a capping agent.The shapes of Cu2O crystal(flower-like structure,nanocube and nanoplate) were tuned by varying species and concentrations of surfactants to control the growth rate on different crystal planes of Cu2O.Cu2O nanostructures were characterized by UV-Vis spectroscopy,XRD,TEM and SEM.XRD result shows that the obtained Cu2O belongs to cubic phase.TEM and SEM results demonstrate that specie and concentration of surfactants play a key role in the formation of various morphologies of Cu2O.The formation mechanism is discussed.Moreover,the optical properties of the obtained Cu2O are shape-dependent.展开更多
文摘A series of novel luminescent materials, SrZnO2:M (M=Eu3+, or Eu3+ + Li+) have been synthesized by high-temperature solid-state reaction. The structure and luminescence properties of SrZnO2:Eu3+ phosphor were studied through XRD, photoluminescence and Raman spectroscopy. The excitation spectra show a broad intense band and a number of small peaks corresponding to the inner 4f-shell excitations of Eu3+ (the strongest one is at 395 nm for 7F0-5L6). After SrZnO2:Eu3+ phosphor was co-doped with Li+ ions, its charge transfer band extended to longer wavelengths. This resulted in increase of luminescent quantum efficiency of the sample. SrZnO2:Eu3+,Li+ phosphor can be efficiently excited by longer UV. From the fluorescence spectrum of SrZnO2:Eu3+ phosphor, apart from transition emissions of 5D0 → 7FJ (J=0~4), the transition emissions from 5D1 → 7FJ (J=0~2) have been observed. For the SrZnO2:Eu3+ phosphor, under excitation of UV, the dominant emission is at about 612 nm, due to the 5D0 → 7F2 hypersensitive transition. The incorporation of Li+ ions greatly enhanced the luminescence intensity and made emission peak from 5D0 → 7F2 transition red-shifted.
文摘Cuprous oxide(Cu2O) hexapodal branch structure with high uniformity was prepared by a solution phase route using sodium dodecyl sulfate as a capping agent.The shapes of Cu2O crystal(flower-like structure,nanocube and nanoplate) were tuned by varying species and concentrations of surfactants to control the growth rate on different crystal planes of Cu2O.Cu2O nanostructures were characterized by UV-Vis spectroscopy,XRD,TEM and SEM.XRD result shows that the obtained Cu2O belongs to cubic phase.TEM and SEM results demonstrate that specie and concentration of surfactants play a key role in the formation of various morphologies of Cu2O.The formation mechanism is discussed.Moreover,the optical properties of the obtained Cu2O are shape-dependent.