期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于遗传算法的生物启发频繁项集挖掘策略
1
作者 赵学健 赵可 《计算机科学》 CSCD 北大核心 2023年第S02期624-631,共8页
精确频繁项集挖掘算法时间效率低下,在处理大规模数据集时力不从心。针对该问题,提出一种基于遗传算法的频繁项集挖掘策略GAA-FIM(Genetic Algorithm combining Apriori property based Frequent Itemset Mining),给出了编码操作、交叉... 精确频繁项集挖掘算法时间效率低下,在处理大规模数据集时力不从心。针对该问题,提出一种基于遗传算法的频繁项集挖掘策略GAA-FIM(Genetic Algorithm combining Apriori property based Frequent Itemset Mining),给出了编码操作、交叉操作、变异操作和选择操作的详细操作规则。该算法将遗传算法与精确频繁项集挖掘算法的向下闭包特性融合,改进了传统的有性繁殖的交叉操作方式,将具有良好遗传基因的个体优先加入到新一代候选种群中,并通过变异操作扩展新一代候选种群的规模,以提升算法的时间效率,获取更佳质量的频繁项集。基于合成数据集和真实数据集对GAA-FIM算法的性能进行了验证,实验结果表明GAA-FIM算法与GAFIM和GA-Apriori等算法相比具有更好的时间效率,频繁项集质量也得到了进一步提升。 展开更多
关键词 频繁项集 遗传算法 生物启发 向下闭包特性 数据挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部