相似用户挖掘是提高社交网络服务质量的重要途径,在面向大数据的社交网络时代,准确的相似用户挖掘对于用户和互联网企业等都有重要的意义,而根据用户自己的兴趣话题挖掘的相似用户更符合相似用户的要求。提出了一种基于用户兴趣话题进...相似用户挖掘是提高社交网络服务质量的重要途径,在面向大数据的社交网络时代,准确的相似用户挖掘对于用户和互联网企业等都有重要的意义,而根据用户自己的兴趣话题挖掘的相似用户更符合相似用户的要求。提出了一种基于用户兴趣话题进行相似用户挖掘的方法。该方法首先使用TextRank话题提取方法对用户进行兴趣话题提取,再对用户发表内容进行训练,计算出所有词之间的相似度。提出CP(Corresponding Position similarity)、CPW(Corresponding Position Weighted similarity)、AP(All Position similarity)、APW(All Position Weighted similarity)四种用户兴趣话题词相似度计算方法,通过用户和相似用户间关注、粉丝重合率验证相似用户挖掘效果,APW similarity的相似用户的关注/粉丝重合百分比为1.687%,优于提出的其他三种算法,分别提高了26.3%、2.8%、12.4%,并且比传统的文本相似度方法 Jaccard相似度、编辑距离算法、余弦相似度分别提高了20.4%、21.2%、45.0%。因此APW方法可以更加有效地挖掘出用户的相似用户。展开更多
文摘相似用户挖掘是提高社交网络服务质量的重要途径,在面向大数据的社交网络时代,准确的相似用户挖掘对于用户和互联网企业等都有重要的意义,而根据用户自己的兴趣话题挖掘的相似用户更符合相似用户的要求。提出了一种基于用户兴趣话题进行相似用户挖掘的方法。该方法首先使用TextRank话题提取方法对用户进行兴趣话题提取,再对用户发表内容进行训练,计算出所有词之间的相似度。提出CP(Corresponding Position similarity)、CPW(Corresponding Position Weighted similarity)、AP(All Position similarity)、APW(All Position Weighted similarity)四种用户兴趣话题词相似度计算方法,通过用户和相似用户间关注、粉丝重合率验证相似用户挖掘效果,APW similarity的相似用户的关注/粉丝重合百分比为1.687%,优于提出的其他三种算法,分别提高了26.3%、2.8%、12.4%,并且比传统的文本相似度方法 Jaccard相似度、编辑距离算法、余弦相似度分别提高了20.4%、21.2%、45.0%。因此APW方法可以更加有效地挖掘出用户的相似用户。