期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLO-V3算法的加油站不安全行为检测 被引量:12
1
作者 常捷 张国维 +2 位作者 陈文江 袁狄平 王永生 《中国安全科学学报》 CAS CSCD 北大核心 2023年第2期31-37,共7页
为控制加油站火灾爆炸风险目标,结合事故统计和故障树分析方法,提出一种基于YOLO-V3算法的加油站不安全行为检测模型。首先在收集90起加油站火灾爆炸事故的基础上,统计分析加油站火灾爆炸事故的点火源;其次构建加油站火灾爆炸故障树,计... 为控制加油站火灾爆炸风险目标,结合事故统计和故障树分析方法,提出一种基于YOLO-V3算法的加油站不安全行为检测模型。首先在收集90起加油站火灾爆炸事故的基础上,统计分析加油站火灾爆炸事故的点火源;其次构建加油站火灾爆炸故障树,计算各基本事件的结构重要度,并确定加油站危险性较高的不安全行为;然后采用现场采集和模拟的方法收集加油站不安全行为图像数据,利用数据增强方法构建加油站不安全行为图像数据集;最后基于深度学习的方法构建加油站不安全行为检测模型,经过1000次训练迭代后得到最终模型。研究结果表明:引起加油站火灾爆炸事故的不安全行为主要有抽烟、打电话等;训练得到的检测模型在测试集上对抽烟、打电话和正常行为检测类别的平均检测精度分别为67%、85%和77%,模型的平均检测精度均值为84%。 展开更多
关键词 YOLO-V3算法 加油站 故障树 不安全行为 火灾爆炸 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部