期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ERF和BO-SVC的交流接触器触头故障识别方法
1
作者 刘树鑫 祁新智 吕先锋 《电力工程技术》 北大核心 2024年第6期173-182,共10页
针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-S... 针对交流接触器各状态样本不均衡导致故障状态识别精度低和特征冗余度高的问题,文中提出一种基于嵌入式随机森林(embedded random forest,ERF)和贝叶斯优化非线性支持向量机(Bayesian optimization-support vector classification,BO-SVC)的复合识别方法。首先,通过交流接触器全寿命试验平台提取接触器状态特征,并针对各状态样本间不均衡导致识别精度低现象,提出一种基于权重法的样本均衡处理策略。然后,使用ERF对均衡后样本进行特征选择和降维,提取最能表征触头状态变化规律的最优特征。最后,将最优特征输入到BO-SVC识别模型,与另外2种代表性模型作为对比,以精确率、召回率和F1-分数3个指标对各模型性能进行评估。在3个指标上,文中方法的结果分别达到95.22%、98.91%和97.01%,均高于对比模型。以F1-分数为指标,在4组样本上对各模型性能进行测试,结果表明文中方法的F1-分数平均高出对比模型0.56%和27.28%,验证文中研究有效解决了交流接触器特征冗余和故障识别精度低的问题。 展开更多
关键词 交流接触器 故障识别 样本不均衡 特征选择 嵌入式随机森林(ERF) 贝叶斯优化非线性支持向量机(BO-SVC)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部