期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
沉浸式3D虚拟仿真实验平台构建 被引量:2
1
作者 李亚南 李聪聪 +1 位作者 马丽 任力生 《实验室研究与探索》 CAS 北大核心 2024年第6期201-208,共8页
为解决传统实践教学在时间、空间上的局限性,增强实践教学的互动性,以虚拟智慧城市中的物联网创新应用为研究对象,结合虚拟现实技术,在实验内容和教学模式中融入价值创造和创业素养,构建融入“创新实验路径”和“多层次综合实验项目”... 为解决传统实践教学在时间、空间上的局限性,增强实践教学的互动性,以虚拟智慧城市中的物联网创新应用为研究对象,结合虚拟现实技术,在实验内容和教学模式中融入价值创造和创业素养,构建融入“创新实验路径”和“多层次综合实验项目”的物联网专业沉浸式3D虚拟仿真实验平台。采用布鲁姆教学目标分类法设计3D虚拟仿真实验教学目标,并按照IAPVE的实施模型,构建基于3D虚拟仿真实验平台的教学实施模型和考核评价模型。实施结果表明,该3D虚拟仿真实验平台及教学实施和考核评价模型可指导实践教学改革,实现学生综合能力的全面协同提升。 展开更多
关键词 3D虚拟仿真 布鲁姆教学目标 教学实施模型 考核评价模型
下载PDF
面向激光雷达点云数据的多结构树种识别 被引量:1
2
作者 陶旭 余富强 +2 位作者 蔡金金 么炜 刘博 《中国农机化学报》 北大核心 2024年第5期168-175,共8页
针对由于树木种间相似性和种内差异性带来的识别困难,以及由于采集环境及设备的多样性导致的点云质量差异,提出面向激光雷达点云数据的多结构树种识别方法(MSTSR)。首先借助改进的组合采样策略,在有效降低数据冗余的同时,保留单木的主... 针对由于树木种间相似性和种内差异性带来的识别困难,以及由于采集环境及设备的多样性导致的点云质量差异,提出面向激光雷达点云数据的多结构树种识别方法(MSTSR)。首先借助改进的组合采样策略,在有效降低数据冗余的同时,保留单木的主体枝干结构;其次通过内建的近邻感知与增强模块(NAE)层次化聚合点云属性,以形成高阶的语义描述;最后通过融合树冠、主干以及整树的多结构信息,生成跨尺度的树木点云表征。在地面激光雷达采集的树种点云数据集上验证该方法的有效性,该数据集由7个树种共690棵树组成的。结果表明:该方法的总体准确率达到94.2%。相比主流的PointNet和PointNet++深度点云分类网络,分别提升13.04和9.42个百分点;相比基于点云的多视图2D投影方法,提升8.19个百分点;相比基于多个测树因子的随机森林方法,提升24.63个百分点,从而证实采用深度网络直接进行树种点云识别的潜力。 展开更多
关键词 树种识别 激光雷达 点云 深度学习
下载PDF
基于时空模式的轨迹数据聚类算法 被引量:17
3
作者 石陆魁 张延茹 张欣 《计算机应用》 CSCD 北大核心 2017年第3期854-859,895,共7页
针对轨迹聚类算法在相似性度量中多以空间特征为度量标准,缺少对时间特征的度量,提出了一种基于时空模式的轨迹数据聚类算法。该算法以划分再聚类框架为基础,首先利用曲线边缘检测方法提取轨迹特征点;然后根据轨迹特征点对轨迹进行子轨... 针对轨迹聚类算法在相似性度量中多以空间特征为度量标准,缺少对时间特征的度量,提出了一种基于时空模式的轨迹数据聚类算法。该算法以划分再聚类框架为基础,首先利用曲线边缘检测方法提取轨迹特征点;然后根据轨迹特征点对轨迹进行子轨迹段划分;最后根据子轨迹段间时空相似性,采用基于密度的聚类算法进行聚类。实验结果表明,使用所提算法提取的轨迹特征点在保证特征点具有较好简约性的前提下较为准确地描述了轨迹结构,同时基于时空特征的相似性度量因同时兼顾了轨迹的空间与时间特征,得到了更好的聚类结果。 展开更多
关键词 时空模式 轨迹数据 曲线边缘检测 相似性度量 密度聚类
下载PDF
基于大数据的IPTV视频评估模型 被引量:1
4
作者 顾军华 高星 +2 位作者 王守彬 武君艳 张素琪 《计算机应用与软件》 北大核心 2018年第8期231-237,共7页
随着网络信息技术的发展以及"三网融合"的推进,交互式网络电视IPTV成为越来越多用户的选择,成为新媒体中的一支主力军,但快速发展的同时也面临着巨大的挑战。如何有效评估供应商提供的大量视频,选择符合用户需求的视频成为IPT... 随着网络信息技术的发展以及"三网融合"的推进,交互式网络电视IPTV成为越来越多用户的选择,成为新媒体中的一支主力军,但快速发展的同时也面临着巨大的挑战。如何有效评估供应商提供的大量视频,选择符合用户需求的视频成为IPTV发展的关键问题。提出利用新媒体和传统媒体的视频大数据和IPTV历史收视大数据,在Spark平台上使用BP神经网络建立视频评估模型。基于新媒体和传统媒体从视频收视度、视频影响度和视频内容三个方面完善视频评估体系;基于IPTV历史收视大数据,建立反映IPTV受众群体喜好的视频隐式评分策略,使用BP神经网络构建视频评估模型;针对大数据的海量性,在Spark并行化平台上建立视频评估模型,实现数据的并行训练,完成模型的建立。实验结果证明,新的视频评估模型能从IPTV受众群体的角度有效评估视频,在Spark平台上进行评估模型的训练,能够有效提高大数据量的评估模型训练速度。 展开更多
关键词 大数据 IPTV视频评估模型 隐式评分 SPARK BP神经网络
下载PDF
沉浸式智能温室3D虚拟仿真实验平台构建
5
作者 李亚南 王伊瑾 滕桂法 《保定学院学报》 2023年第4期99-104,共6页
从专业教学中的重点和难点出发,紧扣温室智能化应用现状和研究前沿动态,打造体现科技前沿、结合创新热点和科研热点的沉浸式智能温室3D虚拟仿真实验平台。该系统将现代温室智能控制与多个计算机相关专业的实践教学相结合,打造沉浸式实... 从专业教学中的重点和难点出发,紧扣温室智能化应用现状和研究前沿动态,打造体现科技前沿、结合创新热点和科研热点的沉浸式智能温室3D虚拟仿真实验平台。该系统将现代温室智能控制与多个计算机相关专业的实践教学相结合,打造沉浸式实验场景和综合性、研究性、创新性虚拟实验教学项目,开展探索型多学科交叉的实践训练。学生不仅能够获得扎实的理论基础知识、综合设计方法,还提高了工程实践能力和创新能力。 展开更多
关键词 智能温室 3D虚拟仿真 教学平台
下载PDF
高校学业文本命名实体识别及数据集构建研究 被引量:1
6
作者 何晨 苑迎春 +1 位作者 王克俭 陶佳 《计算机工程与应用》 CSCD 北大核心 2023年第22期322-328,共7页
近年来,我国高校因学业问题无法顺利毕业的学生数量逐年上升,给高校教学管理工作带来极大压力。利用知识图谱技术快速自动解答学业困惑成为亟待解决的重要问题。实体精准识别可有效提取学业管理文本中的关键信息,但该领域尚未存在公开... 近年来,我国高校因学业问题无法顺利毕业的学生数量逐年上升,给高校教学管理工作带来极大压力。利用知识图谱技术快速自动解答学业困惑成为亟待解决的重要问题。实体精准识别可有效提取学业管理文本中的关键信息,但该领域尚未存在公开适用的标注数据集,因此开展面向具有普遍性和通识性的高校学业命名实体识别数据集变得极为迫切。依据学业管理专家的领域知识,对某高校13万余字学业文本制定了8类学业数据构建标准,并根据构建标准以及文本特性完成了标注工作。将BiLSTM-CRF等4种识别模型在公开数据集和构建数据集上进行实验测试,结果表明构建的数据集可以应用于高校学业领域的命名实体识别任务,构建方法具有普适性,而且分类标注后的数据集识别效果相较未分类数据集有明显提升,进一步验证了该分类标准的有效性。 展开更多
关键词 高校学业 命名实体识别 数据集构建 实体标注 BiLSTM-CRF
下载PDF
基于PB-DBSCAN的GPS数据去噪 被引量:2
7
作者 汪鹏 刘泽玲 +1 位作者 王利琴 董永峰 《计算机工程与设计》 北大核心 2021年第3期678-683,共6页
针对公交车GPS数据量大、数据密度不均匀、噪声点多等问题,提出PB-DBSCAN(pixel_based-DBSCAN,PB-DBSCAN)算法。将聚类过程中判断数据点之间的关系改为判断像素格之间的关系,减小数据点邻域中的搜索范围,加快聚类速度。因公交线路的多样... 针对公交车GPS数据量大、数据密度不均匀、噪声点多等问题,提出PB-DBSCAN(pixel_based-DBSCAN,PB-DBSCAN)算法。将聚类过程中判断数据点之间的关系改为判断像素格之间的关系,减小数据点邻域中的搜索范围,加快聚类速度。因公交线路的多样性,同一聚类参数无法适应所有线路,提出一种动态参数选择的方法。在石家庄公交车GPS实际数据集上进行实验,其结果表明,PB-DBSCAN可以有效识别并过滤GPS数据集中的噪声点,实现快速聚类。与采用固定参数的算法进行比较,参数的动态选择提高了聚类准确度。 展开更多
关键词 GPS轨迹数据 基于像素格的快速密度聚类 动态参数选择 像素格 去噪
下载PDF
联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型 被引量:1
8
作者 张军 吴朋莉 +2 位作者 石陆魁 史进 潘斌 《计算机应用》 CSCD 北大核心 2023年第1期321-328,共8页
针对地面气象站点分布稀疏影响站点间关系以及站点间的关系强度推理难的问题,提出一种基于联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型(GDM)。GDM包括时空注意力(TSA)、双向图神经长短期记忆(DG-LSTM)网络编码和边-点... 针对地面气象站点分布稀疏影响站点间关系以及站点间的关系强度推理难的问题,提出一种基于联合MOD11A1和地面气象站点数据的多站点温度预测深度学习模型(GDM)。GDM包括时空注意力(TSA)、双向图神经长短期记忆(DG-LSTM)网络编码和边-点转换双向门控循环网络解码(EN-GRU)模块。首先使用TSA模块提取MOD11A1图像特征并形成多个虚拟气象站点的温度时间序列,缓解地面气象站点分布稀疏对站点间关系的影响;然后用DG-LSTM编码器通过融合两组温度时间序列来计算地面气象站点间和虚拟气象站点间的关系强度;最后用ENGRU解码器通过结合站点间的关系强度对地面气象站点的温度时间序列关系进行建模。实验结果表明,相较于二维卷积神经网络(2D-CNN)、长短期记忆全连接网络(LSTM-FC)、长短期记忆神经网络扩展网络(LSTME)和长短记忆与自适应提升集成网络(LSTM-AdaBoost),GDM在10个地面气象站点24 h内温度预测的平均绝对误差(MAE)分别减小0.383℃、0.184℃、0.178℃和0.164℃,能提高未来24 h多个气象站点温度的预测精度。 展开更多
关键词 温度预测 注意力机制 深度学习 长短期记忆网络 门控循环单元 图神经网络 MOD11A1 地面气象站点
下载PDF
面向不平衡数据集的改进SMOTE算法 被引量:9
9
作者 董永峰 董彦琦 张亚娟 《河北工业大学学报》 CAS 2022年第6期40-46,共7页
合成少数类过采样技术(SMOTE)提升了分类器在不平衡数据集上的分类性能,但该算法在合成新样本时存在盲目性和边缘化的问题。为此,提出了一种改进算法BSMOTE,该算法对少数类样本进行聚类,在聚类产生的各个簇中任取三个样本构造三角形,在... 合成少数类过采样技术(SMOTE)提升了分类器在不平衡数据集上的分类性能,但该算法在合成新样本时存在盲目性和边缘化的问题。为此,提出了一种改进算法BSMOTE,该算法对少数类样本进行聚类,在聚类产生的各个簇中任取三个样本构造三角形,在三角形的重心与顶点之间合成新样本,从而使新样本向重心靠拢并远离决策边界。在7个不平衡数据集上,采用6种不同的过采样算法平衡数据集,再利用随机森林进行分类,实验结果表明,基于BSMOTE算法的随机森林分类性能更佳,验证了该算法在解决不平衡数据分类问题中的优势。 展开更多
关键词 不平衡数据集 SMOTE算法 聚类 过采样 随机森林
下载PDF
基于异构网络拓扑数据的人类必要基因预测
10
作者 李建伟 岳宗河 +1 位作者 黄焱 段向欢 《河北工业大学学报》 CAS 2018年第3期36-41,共6页
对必要基因进行研究不仅能够了解生物生存和繁殖的最低要求,且有助于寻找人类疾病基因和新的药物靶点.实验法鉴定人类必要基因虽有效但价格昂贵且耗时费力,开发高效算法预测必要基因是对实验法必要而有效的补充.提出一种基于融合多个异... 对必要基因进行研究不仅能够了解生物生存和繁殖的最低要求,且有助于寻找人类疾病基因和新的药物靶点.实验法鉴定人类必要基因虽有效但价格昂贵且耗时费力,开发高效算法预测必要基因是对实验法必要而有效的补充.提出一种基于融合多个异构网络拓扑数据预测必要基因的算法,该算法选用重启动随机游走算法将多个异构网络整合成统一的基因网络特征,采用SMOTE过抽样算法平衡训练支持向量机过程中的正负样本.实验结果表明,整合异构网络拓扑数据方法比基于单一网络的模型能更有效地预测人类必要基因. 展开更多
关键词 人类必要基因 异构网络 过抽样 重启动随机游走 支持向量机
下载PDF
基于改进YOLOv3-SPP算法的道路车辆检测 被引量:3
11
作者 王涛 冯浩 +4 位作者 秘蓉新 李林 何振学 傅奕茗 吴姝 《通信学报》 EI CSCD 北大核心 2024年第2期68-78,共11页
针对在城市道路场景下视觉检测车辆时,车辆密集和远处车辆呈现小尺度,导致出现检测精度低或者漏检的问题,提出了一种基于改进的YOLOv3-SPP算法,对激活函数进行优化,以DIOU-NMS Loss作为边界框损失函数,增强网络的表达能力。为提高所提... 针对在城市道路场景下视觉检测车辆时,车辆密集和远处车辆呈现小尺度,导致出现检测精度低或者漏检的问题,提出了一种基于改进的YOLOv3-SPP算法,对激活函数进行优化,以DIOU-NMS Loss作为边界框损失函数,增强网络的表达能力。为提高所提算法对小目标和遮挡目标的特征提取能力,引入空洞卷积模块,增大目标的感受野。实验结果表明,所提算法在检测车辆目标时m AP提高了1.79%,也有效减少了在检测紧密车辆目标时出现的漏检现象。 展开更多
关键词 车辆检测 YOLOv3-SPP算法 激活函数 空洞卷积 深度学习
下载PDF
基于牛脸和躯干综合信息的奶牛个体识别研究
12
作者 赵玲 周桂红 任力生 《河北农业大学学报》 CAS CSCD 北大核心 2024年第2期112-118,共7页
针对基于单一信息对奶牛个体身份识别精度低的问题,本文提出1种基于牛脸和躯干综合信息对奶牛个体身份识别的方法。在Mask R-CNN目标检测模型的基础上进行改进,将注意力机制模块引入到Mask R-CNN的ResNet50特征提取网络的输出阶段,能够... 针对基于单一信息对奶牛个体身份识别精度低的问题,本文提出1种基于牛脸和躯干综合信息对奶牛个体身份识别的方法。在Mask R-CNN目标检测模型的基础上进行改进,将注意力机制模块引入到Mask R-CNN的ResNet50特征提取网络的输出阶段,能够在图像通道和空间上增强奶牛身份信息。针对奶牛不同部位,本文对改进前后的Mask R-CNN模型分别基于牛脸、基于躯干以及基于牛脸和躯干综合信息进行了相关实验。实验结果表明,原始Mask R-CNN模型基于牛脸和躯干综合信息进行奶牛个体识别,比单独基于牛脸或躯干的识别精度提高2.3%~3.7%。改进后的Mask R-CNN模型在自建奶牛图像数据集上的准确率达到了93.63%,mAP值达到92.16%,相较于原始Mask R-CNN,准确率提高了2.92%,mAP值提高了2.63%。本文方法能够实现对养殖场环境下奶牛个体身份的识别,可为奶牛的精准养殖提供技术支持。 展开更多
关键词 奶牛 牛脸和躯干 个体识别 Mask R-CNN 注意力机制
下载PDF
物联网专业“三师五环”全流程实践教学
13
作者 李亚南 马丽 +1 位作者 李聪聪 尹辉娟 《实验室研究与探索》 CAS 北大核心 2024年第9期142-147,共6页
基于工程教育理念,根据专业知识递进规律和工程技术人才能力形成规律,设计了物联网实践体系布鲁姆三领域教学目标;研发了“思、产、科、创”多元融入的多主题智慧物联网高阶实践项目,以及多学科交叉的“边端-云端”项目资源;模拟企业产... 基于工程教育理念,根据专业知识递进规律和工程技术人才能力形成规律,设计了物联网实践体系布鲁姆三领域教学目标;研发了“思、产、科、创”多元融入的多主题智慧物联网高阶实践项目,以及多学科交叉的“边端-云端”项目资源;模拟企业产品全生命周期研发流程和项目实施情景,建设包括“场景导入、产品构思、产品设计、产品实现、评价运作”的“ICDIO”五步实施路径,开展商业情景模拟下“三师五环”全流程实践教学。为学生营造出高度仿真企业式工作学习一体的实践环境,构建“多阶段、多维度和多元”可视化成果评价体系,全面、客观、量化的评价学生在项目实施中的表现和能力提升。 展开更多
关键词 情景 三师五环 可视化成果 评价体系
下载PDF
基于连续提示注入与指针网络的农业病害命名实体识别
14
作者 王春山 张宸硕 +3 位作者 吴华瑞 朱华吉 缪祎晟 张立杰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期254-261,共8页
针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp... 针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。 展开更多
关键词 农业病害 命名实体识别 连续提示 指针网络 嵌套实体 预训练语言模型
下载PDF
基于改进YOLO v8n-seg的羊只实例分割方法
15
作者 王福顺 王旺 +2 位作者 孙小华 王超 袁万哲 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期322-332,共11页
羊只实例分割是实现羊只识别和跟踪、行为分析和管理、疾病监测等任务的重要前提。针对规模化羊场复杂养殖环境中,羊只个体存在遮挡、光线昏暗、个体颜色与背景相似等情况所导致的羊只实例错检、漏检问题,提出了一种基于改进YOLO v8n-se... 羊只实例分割是实现羊只识别和跟踪、行为分析和管理、疾病监测等任务的重要前提。针对规模化羊场复杂养殖环境中,羊只个体存在遮挡、光线昏暗、个体颜色与背景相似等情况所导致的羊只实例错检、漏检问题,提出了一种基于改进YOLO v8n-seg的羊只实例分割方法。以YOLO v8n-seg网络作为基础模型进行羊只个体分割任务,首先,引入Large separable kernel attention模块以增强模型对实例重要特征信息的捕捉能力,提高特征的代表性及模型的鲁棒性;其次,采用超实时语义分割模型DWR-Seg中的Dilation-wise residual模块替换C2f中的Bottleneck模块,以优化模型对网络高层特征的提取能力,扩展模型感受野,增强上下文语义之间的联系,生成带有丰富特征信息的新特征图;最后,引用Dilated reparam block模块对C2f进行二次改进,多次融合从网络高层提取到的特征信息,增强模型对特征的理解能力。试验结果表明,改进后的YOLO v8n-LDD-seg对羊只实例的平均分割精度mAP_(50)达到92.08%,mAP_(50:90)达到66.54%,相较于YOLO v8n-seg,分别提升3.06、3.96个百分点。YOLO v8n-LDD-seg有效提高了羊只个体检测精度,提升了羊只实例分割效果,为复杂养殖环境下羊只实例检测和分割提供了技术支持。 展开更多
关键词 羊只 个体检测 实例分割 改进YOLO v8n-LDD-seg网络
下载PDF
基于改进YOLO v8n模型的散养蛋鸡个体行为识别方法与差异分析
16
作者 杨断利 齐俊林 +2 位作者 陈辉 高媛 王连增 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期112-123,共12页
家禽行为与其生理状态密切相关,可利用行为数据对家禽健康状况进行评估。统计个体行为数据需要进行蛋鸡行为识别和个体身份识别,针对行为识别过程中,蛋鸡体型小、聚集遮挡,养殖环境光照变化等因素导致的蛋鸡有效特征表达不足,个体行为... 家禽行为与其生理状态密切相关,可利用行为数据对家禽健康状况进行评估。统计个体行为数据需要进行蛋鸡行为识别和个体身份识别,针对行为识别过程中,蛋鸡体型小、聚集遮挡,养殖环境光照变化等因素导致的蛋鸡有效特征表达不足,个体行为识别效果不理想问题,基于YOLO v8n网络构建行为识别模型,同时融合ODConv、GhostBottleneck、GAM注意力和Inner-IoU结构,通过减少图像特征丢失,放大全局交互信息,融合跨阶段特征,增强特征提取及泛化能力对模型进行改进,提升了蛋鸡采食、饮水、站立、整理羽毛、俯身搜索5种行为的识别精度。同时基于YOLO v8n模型构建了个体身份识别网络,并通过引入MobileNetV3模块对个体身份识别网络模型进行优化,提升了个体行为数据统计效率。试验结果表明,优化后行为识别模型对采食、饮水、站立、整理羽毛、俯身搜索行为识别平均精度(AP)分别达到94.4%、93.0%、90.7%、91.7%、86.9%,平均精度均值(mAP)达到91.4%,与YOLO v5n、YOLO v6n、YOLO v7-tiny、YOLO v8n相比,平均精度均值(mAP)分别提高4.8、4.1、5.5、3.5个百分点;个体身份识别模型参数量和运算量与YOLO v8n模型相比,减少1.965 1×10^(6)和6.1×10^(9)。通过分析蛋鸡行为数据发现,行为数据与温度及蛋鸡个体本身有关,温度降低时,采食、站立次数增加,饮水次数减少,整理羽毛、俯身搜索次数几乎无变化,相同温度下,不同蛋鸡个体的行为数据差异较大,且差异值与蛋鸡体型有关。试验结果为依据行为数据评判蛋鸡健康状况、养殖场精准养殖及蛋鸡个体优选奠定了基础。 展开更多
关键词 散养蛋鸡 行为识别 YOLO v8n 多目标识别 MobileNetV3 ODConv
下载PDF
基于改进YOLO v8s的羊只行为识别方法 被引量:4
17
作者 王旺 王福顺 +4 位作者 张伟进 刘红达 王晨 王超 何振学 《农业机械学报》 EI CAS CSCD 北大核心 2024年第7期325-335,344,共12页
羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境... 羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境下,羊只行为多样、场景复杂、存在遮挡等造成的行为识别精度低等问题,提出了一种基于改进YOLO v8s的羊只行为识别方法。首先,引入SPPCSPC空间金字塔结构增强了模型的特征提取能力,提升了模型的检测精度。其次,新增P2小目标检测层,增强了模型对小目标的识别和定位能力。最后,引入多尺度轻量化模块PConv和EMSConv,在保证模型识别效果的同时,降低了模型参数量和计算量,实现了模型轻量化。实验结果表明,改进YOLO v8s模型对羊只站立、行走、采食、饮水、趴卧行为平均识别精度分别为84.62%、92.58%、87.54%、98.13%和87.18%,整体平均识别精度为90.01%。与Faster R-CNN、YOLO v5s、YOLO v7、YOLO v8s模型相比,平均识别精度分别提高12.03、3.95、1.46、2.19个百分点。研究成果可为羊只健康管理和疾病预警提供技术支撑。 展开更多
关键词 行为识别 YOLO v8s 轻量化
下载PDF
融合特征权重与改进粒子群优化的特征选择算法 被引量:4
18
作者 刘振超 苑迎春 +1 位作者 王克俭 何晨 《计算机工程与科学》 CSCD 北大核心 2024年第2期282-291,共10页
随着教育信息化的发展,教育数据呈现特征数量高、冗余度高等特点,这使目前的分类算法在教育数据上分类准确率不理想。提出一种将特征权重算法与改进粒子群优化算法融合的混合式特征选择算法(RF-ATPSO)。该算法首先使用RELIEF-F算法计算... 随着教育信息化的发展,教育数据呈现特征数量高、冗余度高等特点,这使目前的分类算法在教育数据上分类准确率不理想。提出一种将特征权重算法与改进粒子群优化算法融合的混合式特征选择算法(RF-ATPSO)。该算法首先使用RELIEF-F算法计算各个特征的权重,筛除冗余特征,然后在筛选后的特征集合中利用改进粒子群算法搜索最优特征子集。实验结果表明,在6个UCI公共数据集上,经RF-ATPSO算法进行特征选择后,平均准确率提升了10.04%,且平均特征子集规模最小、收敛速度最快;在学生学业成绩画像特征数据集上,该算法以较小的特征子集规模达到较高的分类准确率,平均准确率为94.77%,明显优于其它特征选择算法,实验充分证明了该算法具有实际应用意义。 展开更多
关键词 特征选择 特征权重 改进粒子群优化 T-分布
下载PDF
基于改进YOLO v8的牛只行为识别与跟踪方法 被引量:2
19
作者 付辰伏 任力生 王芳 《农业机械学报》 EI CAS CSCD 北大核心 2024年第5期290-301,共12页
随着我国畜牧业的快速发展,牛只养殖由分散性养殖逐渐向精准化养殖转变。针对分散养殖中农户无法对每头牛只健康状况给予足够关注的问题,通过分析牛只行为模式结合视觉方向特征,设计了综合管理方法来准确识别和跟踪牛只行为。首先,采用... 随着我国畜牧业的快速发展,牛只养殖由分散性养殖逐渐向精准化养殖转变。针对分散养殖中农户无法对每头牛只健康状况给予足够关注的问题,通过分析牛只行为模式结合视觉方向特征,设计了综合管理方法来准确识别和跟踪牛只行为。首先,采用改进YOLO v8算法对牛只进行目标监测,其中,在Backbone和Neck端使用C2f-faster结构,增强模型特征提取能力;引入上采样算子CARAFE,拓宽感受视野进行数据特征融合;针对牛只幼仔检测加入BiFormer注意力机制,以识别牛只小面积特征;更换动态目标检测头DyHead,融合尺度、空间和任务感知;然后,使用Focal SIoU函数,解决正负样本分配不均衡和CIoU局限性的问题。最后,将YOLO v8检测到的行为类别信息引入BoTSORT算法中,实现在复杂场景下牛只多目标行为识别跟踪。实验结果表明,提出的FBCD-YOLO v8n(FasterNet、BiFormer、CARAFE、DyHead)模型在牛只行为数据集上,相比较YOLO v5n、YOLO v7tiny和原YOLO v8n模型的mAP@0.5分别提升3.4、3.1、2.4个百分点,尤其牛只回舔行为识别平均精度提高7.4个百分点。跟踪方面,BoTSORT算法的MOTA为96.1%,MOTP为78.6%,IDF1为98.0%,HOTA为78.9%;与ByteTrack、StrongSORT算法比,MOTA和IDF1显著提升,跟踪效果良好。研究表明,在牛舍养殖环境下,本研究构建的多目标牛只行为识别跟踪系统,可有效帮助农户监测牛只行为,为牛只的自动化精准养殖提供技术支持。 展开更多
关键词 牛只 目标监测 行为识别 多目标跟踪 YOLO v8 BoTSORT
下载PDF
融合注意力机制与联合优化的表面缺陷检测 被引量:3
20
作者 董永峰 孙松毅 +1 位作者 王振 刘晶 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期102-111,共10页
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网... 两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007, MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能. 展开更多
关键词 深度学习 特征融合 缺陷检测 注意力机制
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部