期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
聚类分析在入侵检测中的应用
被引量:
2
1
作者
孙珊珊
《河北省科学院学报》
CAS
2010年第3期31-34,共4页
在对现有的入侵检测技术研究的基础上,着重对数据挖掘技术中的聚类分析方法在入侵检测领域中的应用进行了研究。通过分析网络中数据的特点,提出了一种基于改进的k-means算法的无监督二次聚类算法,并用入侵检测权威数据集KDD Cup1999作...
在对现有的入侵检测技术研究的基础上,着重对数据挖掘技术中的聚类分析方法在入侵检测领域中的应用进行了研究。通过分析网络中数据的特点,提出了一种基于改进的k-means算法的无监督二次聚类算法,并用入侵检测权威数据集KDD Cup1999作为实验数据将其实现,实验表明,该算法具有较高的检测率和较低的误检率。
展开更多
关键词
入侵检测
数据挖掘
聚类分析
下载PDF
职称材料
题名
聚类分析在入侵检测中的应用
被引量:
2
1
作者
孙珊珊
机构
河北省电子信息技术研究院信息化测评中心
出处
《河北省科学院学报》
CAS
2010年第3期31-34,共4页
文摘
在对现有的入侵检测技术研究的基础上,着重对数据挖掘技术中的聚类分析方法在入侵检测领域中的应用进行了研究。通过分析网络中数据的特点,提出了一种基于改进的k-means算法的无监督二次聚类算法,并用入侵检测权威数据集KDD Cup1999作为实验数据将其实现,实验表明,该算法具有较高的检测率和较低的误检率。
关键词
入侵检测
数据挖掘
聚类分析
Keywords
Intrusion detection
Data mining
Clustering analysis
分类号
TP393.08 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
聚类分析在入侵检测中的应用
孙珊珊
《河北省科学院学报》
CAS
2010
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部