采用液相共沉淀法制备了掺杂Bi_2O_3的锌酸钙粉末。X射线衍射测试表明,共沉淀的Bi没有进入锌酸钙的晶格而是以Bi_2O_3的形式析出并部分沉积在锌酸钙表面。恒电流充放电测试结果表明,Bi_2O_3在首次充电时能够转化为金属Bi并稳定存在于锌...采用液相共沉淀法制备了掺杂Bi_2O_3的锌酸钙粉末。X射线衍射测试表明,共沉淀的Bi没有进入锌酸钙的晶格而是以Bi_2O_3的形式析出并部分沉积在锌酸钙表面。恒电流充放电测试结果表明,Bi_2O_3在首次充电时能够转化为金属Bi并稳定存在于锌酸钙电极中。与未掺杂电极相比,掺杂10%(质量分数)Bi_2O_3后,锌酸钙电极的0.2 C比容量由391m Ah/g提高至433 m Ah/g,1 C比容量由372 m Ah/g提高至389 m Ah/g,3 C比容量由312 m Ah/g提高至330 m Ah/g,1 C循环30次后容量保持率由61%提高到92%。展开更多
文摘采用液相共沉淀法制备了掺杂Bi_2O_3的锌酸钙粉末。X射线衍射测试表明,共沉淀的Bi没有进入锌酸钙的晶格而是以Bi_2O_3的形式析出并部分沉积在锌酸钙表面。恒电流充放电测试结果表明,Bi_2O_3在首次充电时能够转化为金属Bi并稳定存在于锌酸钙电极中。与未掺杂电极相比,掺杂10%(质量分数)Bi_2O_3后,锌酸钙电极的0.2 C比容量由391m Ah/g提高至433 m Ah/g,1 C比容量由372 m Ah/g提高至389 m Ah/g,3 C比容量由312 m Ah/g提高至330 m Ah/g,1 C循环30次后容量保持率由61%提高到92%。