收集来自国内3个主要小麦生产省份的小麦样品共73份,应用近红外光谱漫反射技术结合化学计量学方法建立小麦蛋白质含量的近红外光谱定量模型,并对模型的稳定性和可靠性进行评价。结果表明,光谱预处理的最佳条件为:Savitzky-Golay平滑+一...收集来自国内3个主要小麦生产省份的小麦样品共73份,应用近红外光谱漫反射技术结合化学计量学方法建立小麦蛋白质含量的近红外光谱定量模型,并对模型的稳定性和可靠性进行评价。结果表明,光谱预处理的最佳条件为:Savitzky-Golay平滑+一阶导数处理,使用偏最小二乘法(Partial least square,PLS)建立模型,校正集(Rc)和预测集相关系数(Rp)为0.936和0.925,校正集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别为0.23和0.28,表明模型准确可靠,可应用于小麦蛋白质含量的快速无损检测。展开更多
文摘收集来自国内3个主要小麦生产省份的小麦样品共73份,应用近红外光谱漫反射技术结合化学计量学方法建立小麦蛋白质含量的近红外光谱定量模型,并对模型的稳定性和可靠性进行评价。结果表明,光谱预处理的最佳条件为:Savitzky-Golay平滑+一阶导数处理,使用偏最小二乘法(Partial least square,PLS)建立模型,校正集(Rc)和预测集相关系数(Rp)为0.936和0.925,校正集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别为0.23和0.28,表明模型准确可靠,可应用于小麦蛋白质含量的快速无损检测。