期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度学习在核物理中的应用
被引量:
5
1
作者
庞龙刚
周凯
王新年
《原子核物理评论》
CAS
CSCD
北大核心
2020年第3期720-726,共7页
深度学习是目前最好的模式识别工具,预期会在核物理领域帮助科学家从大量复杂数据中寻找与某些物理最相关的特征。本文综述了深度学习技术的分类,不同数据结构对应的最优神经网络架构,黑盒模型的可解释性与预测结果的不确定性。介绍了...
深度学习是目前最好的模式识别工具,预期会在核物理领域帮助科学家从大量复杂数据中寻找与某些物理最相关的特征。本文综述了深度学习技术的分类,不同数据结构对应的最优神经网络架构,黑盒模型的可解释性与预测结果的不确定性。介绍了深度学习在核物质状态方程、核结构、原子核质量、衰变与裂变方面的应用,并展示如何训练神经网络预测原子核质量。结果发现使用实验数据训练的神经网络模型对未参与训练的实验数据拥有良好的预测能力。基于已有的实验数据外推,神经网络对丰中子的轻原子核质量预测结果与宏观微观液滴模型有较大偏离。此区域可能存在未被宏观微观液滴模型包含的新物理,需要进一步的实验数据验证。
展开更多
关键词
机器学习
深度学习
核结构
核物质状态方程
核裂变
原文传递
题名
深度学习在核物理中的应用
被引量:
5
1
作者
庞龙刚
周凯
王新年
机构
华中师范大学夸克与轻子教育部重点实验室
华中师范大学粒子物理
研究
所
法兰克福高等研究中心
劳伦斯伯克利国家实验室
出处
《原子核物理评论》
CAS
CSCD
北大核心
2020年第3期720-726,共7页
基金
国家自然科学基金资助项目(11861131009)。
文摘
深度学习是目前最好的模式识别工具,预期会在核物理领域帮助科学家从大量复杂数据中寻找与某些物理最相关的特征。本文综述了深度学习技术的分类,不同数据结构对应的最优神经网络架构,黑盒模型的可解释性与预测结果的不确定性。介绍了深度学习在核物质状态方程、核结构、原子核质量、衰变与裂变方面的应用,并展示如何训练神经网络预测原子核质量。结果发现使用实验数据训练的神经网络模型对未参与训练的实验数据拥有良好的预测能力。基于已有的实验数据外推,神经网络对丰中子的轻原子核质量预测结果与宏观微观液滴模型有较大偏离。此区域可能存在未被宏观微观液滴模型包含的新物理,需要进一步的实验数据验证。
关键词
机器学习
深度学习
核结构
核物质状态方程
核裂变
Keywords
machine learning
deep learning
nuclear structure
nuclear equation of state
nuclear fission
分类号
O152 [理学—基础数学]
O414.3 [理学—理论物理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
深度学习在核物理中的应用
庞龙刚
周凯
王新年
《原子核物理评论》
CAS
CSCD
北大核心
2020
5
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部