期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TRT装置顶压控制过程在高炉上料操作中的系统辨识 被引量:2
1
作者 刘希琳 杨春节 宋执环 《冶金能源》 北大核心 2008年第4期51-55,共5页
正常工况下高炉间歇上料所造成的料柱变化是引起高炉煤气余压透平发电装置(TRT)炉顶压力不稳定的主要因素。从机理上详细分析了TRT系统中高炉料柱变化对炉顶压力的影响,结合系统辨识的方法,建立了以透平机静叶开度和高炉料柱的料线高度... 正常工况下高炉间歇上料所造成的料柱变化是引起高炉煤气余压透平发电装置(TRT)炉顶压力不稳定的主要因素。从机理上详细分析了TRT系统中高炉料柱变化对炉顶压力的影响,结合系统辨识的方法,建立了以透平机静叶开度和高炉料柱的料线高度为输入,以高炉炉顶压力为输出的系统动态模型,并采用TRT系统现场运行数据对所建立的模型进行了验证。结果表明,所建立的数学模型很好地描述了TRT系统中高炉上料间歇操作与炉顶压力之间的定量关系,模型辨识比较精确。 展开更多
关键词 TRT 高炉顶压 高炉上料 动态模型 系统辨识
下载PDF
Rapid vision-based system for secondary copper content estimation 被引量:2
2
作者 张宏伟 葛志强 +2 位作者 袁小锋 宋执环 叶凌箭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2665-2676,共12页
A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the design... A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small. 展开更多
关键词 secondary copper copper content estimation sample selection color vector angle least squares support vector regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部