期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
耦合注意力机制DNN的PM_(2.5)估算及时空特征分析 被引量:1
1
作者 陈镔捷 叶扬 +4 位作者 林溢 游诗雪 邓劲松 杨武 王珂 《遥感学报》 EI CSCD 北大核心 2022年第5期1027-1038,共12页
PM_(2.5)作为指示环境质量的重要因子之一,不仅影响着灰霾天气的发生,还与公众健康息息相关,近年来受到广泛的关注。尽管PM_(2.5)地面观测站点在不断地扩张,其覆盖范围依旧有限,难以反映全域PM_(2.5)浓度的时空异质性。本研究运用卫星... PM_(2.5)作为指示环境质量的重要因子之一,不仅影响着灰霾天气的发生,还与公众健康息息相关,近年来受到广泛的关注。尽管PM_(2.5)地面观测站点在不断地扩张,其覆盖范围依旧有限,难以反映全域PM_(2.5)浓度的时空异质性。本研究运用卫星遥感气溶胶光学厚度数据,辅助因子除常规的气象因子等以外,还加入了针对中国人民生产生活习惯的农历日因子,提出一种耦合注意力机制的深度神经网络模型,对长三角区域2015年—2020年PM_(2.5)浓度进行了逐日的高精度估算。模型交叉验证结果显示决定系数R2高达0.85,斜率0.86,与地面站点观测值有较高的一致性,优于多元线性回归和随机森林模型。长三角区域PM_(2.5)浓度时空特征分析结果表明,PM_(2.5)浓度在空间上呈现北高南低的趋势;季节特征以冬季浓度最高,夏季浓度最低,春秋过渡。此外,长三角区域2015年—2020年整体PM_(2.5)浓度呈下降趋势,其中以上海市最为明显,下降速率为3.30μg/(m^(3)·a),其次为江苏省(2.65μg/(m^(3)·a));浙江省与安徽省下降速率都小于2μg/(m^(3)·a),但由于安徽省PM_(2.5)浓度远高于浙江省,提升空间更大,需要更多的关注。综上所述,利用卫星数据结合本研究提出的方法能弥补地面观测站点的不足,获得高精度全域PM_(2.5)浓度时空分布特征,从而更科学地指导相关政策的规划与落地。 展开更多
关键词 遥感 气溶胶光学厚度(AOD) 深度学习 注意力机制 长三角区域 空气质量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部