目的探讨灰度共生矩阵和灰度梯度共生矩阵统计学纹理特征在CT图像上甲状腺结节良恶性鉴别的可行性。方法回顾性收集甲状腺结节经手术病理证实的CT图像134例,手动提取含结节的单侧甲状腺感兴趣区(region of interest,ROI)。计算ROI的统...目的探讨灰度共生矩阵和灰度梯度共生矩阵统计学纹理特征在CT图像上甲状腺结节良恶性鉴别的可行性。方法回顾性收集甲状腺结节经手术病理证实的CT图像134例,手动提取含结节的单侧甲状腺感兴趣区(region of interest,ROI)。计算ROI的统计学纹理特征并归一化到[0,1],支持向量机作为分类器,并结合留一交叉验证法来评价实验效果。结果统计学纹理特征在甲状腺结节良恶性鉴别中的准确率为0.76,敏感度0.60,特异性0.86和受试者操作曲线下面积为0.81。结论基于灰度共生矩阵和灰度梯度共生矩阵的统计法纹理特征,在甲状腺CT图像上对于结节的良恶性鉴别具有较好的分类效果。展开更多
文摘目的探讨灰度共生矩阵和灰度梯度共生矩阵统计学纹理特征在CT图像上甲状腺结节良恶性鉴别的可行性。方法回顾性收集甲状腺结节经手术病理证实的CT图像134例,手动提取含结节的单侧甲状腺感兴趣区(region of interest,ROI)。计算ROI的统计学纹理特征并归一化到[0,1],支持向量机作为分类器,并结合留一交叉验证法来评价实验效果。结果统计学纹理特征在甲状腺结节良恶性鉴别中的准确率为0.76,敏感度0.60,特异性0.86和受试者操作曲线下面积为0.81。结论基于灰度共生矩阵和灰度梯度共生矩阵的统计法纹理特征,在甲状腺CT图像上对于结节的良恶性鉴别具有较好的分类效果。