大部分工程实际问题可以用多自由度非线性系统来描述,这些系统的数学模型是许多个耦合的两阶常微分方程。一般地,要精确求解这些方程非常困难,因此可以考虑它们的解析近似解。同伦分析方法是解非线性系统响应的有用工具,本文将它应用于...大部分工程实际问题可以用多自由度非线性系统来描述,这些系统的数学模型是许多个耦合的两阶常微分方程。一般地,要精确求解这些方程非常困难,因此可以考虑它们的解析近似解。同伦分析方法是解非线性系统响应的有用工具,本文将它应用于多自由度非线性系统的求解中。利用求两自由度耦合van del Pol振子周期解的实例,展示了同伦分析方法的有效性和巨大潜力。同时,把得到的解析近似解与系统的Runge-Kutta数值解作了比较,结果表明同伦分析方法是求解多自由度非线性系统的有效方法。展开更多
文摘大部分工程实际问题可以用多自由度非线性系统来描述,这些系统的数学模型是许多个耦合的两阶常微分方程。一般地,要精确求解这些方程非常困难,因此可以考虑它们的解析近似解。同伦分析方法是解非线性系统响应的有用工具,本文将它应用于多自由度非线性系统的求解中。利用求两自由度耦合van del Pol振子周期解的实例,展示了同伦分析方法的有效性和巨大潜力。同时,把得到的解析近似解与系统的Runge-Kutta数值解作了比较,结果表明同伦分析方法是求解多自由度非线性系统的有效方法。