碳化硅(SiC)纤维具有高强度、高模量、耐高温、抗蠕变、抗氧化等优异性能,是增强耐高温陶瓷基复合材料的关键材料。介绍了先驱体法制备3代SiC纤维的发展历程:从第1代高氧碳含量SiC纤维发展到第2代低氧高碳含量SiC纤维,再到第3代近化学...碳化硅(SiC)纤维具有高强度、高模量、耐高温、抗蠕变、抗氧化等优异性能,是增强耐高温陶瓷基复合材料的关键材料。介绍了先驱体法制备3代SiC纤维的发展历程:从第1代高氧碳含量SiC纤维发展到第2代低氧高碳含量SiC纤维,再到第3代近化学计量比SiC纤维,SiC纤维的微结构从非晶到微晶显著变化,纤维的耐热性能也显著提高。重点比较了第3代近化学计量比SiC纤维(Hi-Nicalon Type S纤维、Tyranno SA和Sylramic纤维等)的性质,结果表明:SiC纤维的热稳定性由近化学计量比SiC微晶的致密度和微结构决定,Sylramic和Tyranno SA纤维的组成和微结构可通过控制Si-C-O纤维的碳热还原反应来实现,烧结助剂的采用及陶瓷烧结工艺的有效应用可提高纤维的致密度。Hi-Nicalon Type S纤维的组成和微结构取决于聚碳硅烷分解过程中特定的气氛和温度。简介了SiC纤维的研究进展并讨论了其发展趋势。展开更多
文摘碳化硅(SiC)纤维具有高强度、高模量、耐高温、抗蠕变、抗氧化等优异性能,是增强耐高温陶瓷基复合材料的关键材料。介绍了先驱体法制备3代SiC纤维的发展历程:从第1代高氧碳含量SiC纤维发展到第2代低氧高碳含量SiC纤维,再到第3代近化学计量比SiC纤维,SiC纤维的微结构从非晶到微晶显著变化,纤维的耐热性能也显著提高。重点比较了第3代近化学计量比SiC纤维(Hi-Nicalon Type S纤维、Tyranno SA和Sylramic纤维等)的性质,结果表明:SiC纤维的热稳定性由近化学计量比SiC微晶的致密度和微结构决定,Sylramic和Tyranno SA纤维的组成和微结构可通过控制Si-C-O纤维的碳热还原反应来实现,烧结助剂的采用及陶瓷烧结工艺的有效应用可提高纤维的致密度。Hi-Nicalon Type S纤维的组成和微结构取决于聚碳硅烷分解过程中特定的气氛和温度。简介了SiC纤维的研究进展并讨论了其发展趋势。