-
题名基于评分区间相似性的协同过滤推荐算法
被引量:1
- 1
-
-
作者
项武
-
机构
浙江省丽水市财政局(地方税务局)信息中心
-
出处
《微电子学与计算机》
CSCD
北大核心
2010年第7期125-128,132,共5页
-
文摘
研究协同过滤推荐系统处理大规模稀疏评价数据的精度问题,针对目前余弦相似性处理极稀疏的用户评价矩阵不能获取满意推荐质量,且处理大规模推荐数据时存在性能缺陷的情况,提出基于评分区间相似性的协同过滤推荐算法.将用户评价的数值范围进行定性划分,以项目在各评价区间上的得分建模项目质量,以用户在各评价区间内的评分建模用户评分取向.使用余弦相似性度量方法衡量用户和项目间的相似程度,进而确定最近邻居.此方法的实现过程降低了稀疏性对最近邻发现的影响,且算法具有快速处理大规模评价数据的能力.使用标准的MovieLens数据集,测试提出的推荐算法,实验结果表明,本算法相比传统的最近邻推荐算法具有更好的推荐精度.
-
关键词
推荐系统
协同过滤
相似性度量
余弦相似性
-
Keywords
recommendation system
collaborative filtering
similarity measurement
cosine similarity
-
分类号
TP311
[自动化与计算机技术—计算机软件与理论]
-