高性能电极材料开发是大电流密度电解水制氢的关键.实验采用微波等离子体化学气相沉积(MPCVD)实现Mo基体直接生长活性MoS_(2)纳米片阵列,设计CH4/H2等离子体实现碳掺杂原位调控活性层MoS_(2)晶相结构,制备了呈异质结构的1T/2H-MoS_(2)@M...高性能电极材料开发是大电流密度电解水制氢的关键.实验采用微波等离子体化学气相沉积(MPCVD)实现Mo基体直接生长活性MoS_(2)纳米片阵列,设计CH4/H2等离子体实现碳掺杂原位调控活性层MoS_(2)晶相结构,制备了呈异质结构的1T/2H-MoS_(2)@Mo电极.电化学性能测试显示,1T/2H-MoS_(2)@Mo电极在1000 mA cm^(-2)大电流密度下表现出281 mV低过电位和超100 h的持续稳定性.Butler-Volmer(B-V)拟合证实,1T/2H-MoS_(2)@Mo具有媲美Pt的动力学性能.密度泛函理论(DFT)计算表明,C掺杂诱导形成的1T/2H-MoS_(2)晶体畴壁具有非对称性结构,造成MoS_(2)表面电荷的不均匀分布,进而激活表面惰性S位点,降低氢吸附自由能(ΔGH*);同时,Mo基体与活性层1T/2H-MoS_(2)间的能带重叠效应,赋予1T/2H-MoS_(2)@Mo优异的载体/活性层界面结构稳定性.MPCVD自生长晶相结构调控策略为大电流密度非贵金属析氢电极制备提供了技术支持.展开更多
文摘高性能电极材料开发是大电流密度电解水制氢的关键.实验采用微波等离子体化学气相沉积(MPCVD)实现Mo基体直接生长活性MoS_(2)纳米片阵列,设计CH4/H2等离子体实现碳掺杂原位调控活性层MoS_(2)晶相结构,制备了呈异质结构的1T/2H-MoS_(2)@Mo电极.电化学性能测试显示,1T/2H-MoS_(2)@Mo电极在1000 mA cm^(-2)大电流密度下表现出281 mV低过电位和超100 h的持续稳定性.Butler-Volmer(B-V)拟合证实,1T/2H-MoS_(2)@Mo具有媲美Pt的动力学性能.密度泛函理论(DFT)计算表明,C掺杂诱导形成的1T/2H-MoS_(2)晶体畴壁具有非对称性结构,造成MoS_(2)表面电荷的不均匀分布,进而激活表面惰性S位点,降低氢吸附自由能(ΔGH*);同时,Mo基体与活性层1T/2H-MoS_(2)间的能带重叠效应,赋予1T/2H-MoS_(2)@Mo优异的载体/活性层界面结构稳定性.MPCVD自生长晶相结构调控策略为大电流密度非贵金属析氢电极制备提供了技术支持.