期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于GMP-LeNet网络的车牌识别方法 被引量:9
1
作者 林哲聪 张江鑫 《计算机科学》 CSCD 北大核心 2018年第B06期183-186,共4页
车牌识别技术是智能交通管理系统的核心,对它的研究与开发具有重要的商业前景。传统的车牌字符识别方法存在特征提取复杂的问题,而卷积神经网络作为一种高效识别算法,对处理二维车牌图像具有独特的优越性。针对传统卷积神经网络LeNet-5... 车牌识别技术是智能交通管理系统的核心,对它的研究与开发具有重要的商业前景。传统的车牌字符识别方法存在特征提取复杂的问题,而卷积神经网络作为一种高效识别算法,对处理二维车牌图像具有独特的优越性。针对传统卷积神经网络LeNet-5识别车牌图像时,存在训练数据较少、全连接层参数冗余以及网络严重过拟合等一系列的问题,设计了一种全局中间值池化(GMP-LeNet)网络,其使用卷积层代替全连接层,利用Network In Network网络中的1*1卷积核进行通道降维,全局均值池化层直接将降维后的特征图馈送到输出层。实验证明,GMP-LeNet网络能有效抑制过拟合现象,并具有较快的识别速度和较高的鲁棒性,车牌识别率达到了98.5%。 展开更多
关键词 车牌识别 卷积神经网络 LeNet-5 过拟合 池化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部