期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于少量数据集的三维点云生成模型
1
作者 张渊杰 沈洋 +2 位作者 许浩 包艳霞 应震 《软件工程》 2024年第11期69-74,共6页
针对生成对抗网络(GAN)需要大量训练数据及点云数据稀缺且获取难度大的问题,提出一种基于少量数据集的三维点云生成模型。该模型首先通过重采样和水平旋转的方法实现数据增强,使第一级网络能够生成具有多样性的低分辨率点云;其次通过确... 针对生成对抗网络(GAN)需要大量训练数据及点云数据稀缺且获取难度大的问题,提出一种基于少量数据集的三维点云生成模型。该模型首先通过重采样和水平旋转的方法实现数据增强,使第一级网络能够生成具有多样性的低分辨率点云;其次通过确保低分辨率点云与高分辨率点云之间的对应关系,实现点云的超分辨率生成;最后实现生成具有多样性的高分辨率点云。实验结果表明,在ShapeNet Part(ShapeNet Part Segmentation Dataset)数据集上,该模型的JS散度相较于Tree-GAN的JS散度下降了0.416,证明其性能优于Tree-GAN。 展开更多
关键词 GAN 少量点云数据 重采样 数据增强 超分辨率
下载PDF
基于注意力掩码的领域泛化研究
2
作者 路京 沈洋 +2 位作者 许浩 包艳霞 应震 《软件导刊》 2024年第4期14-20,共7页
深度学习在区分特征方面表现较好,但将其应用于未知领域时,已训练好的模型往往会因领域移位而导致模型性能下降。针对该情况,领域泛化(DG)从多个源领域学习可迁移特征,将其泛化到未知的目标领域。由于不同领域训练的模型更偏向其中最显... 深度学习在区分特征方面表现较好,但将其应用于未知领域时,已训练好的模型往往会因领域移位而导致模型性能下降。针对该情况,领域泛化(DG)从多个源领域学习可迁移特征,将其泛化到未知的目标领域。由于不同领域训练的模型更偏向其中最显著的特征,往往会忽略与任务相关的一般性特征,而可迁移特征通常并不是该领域最显著的特征。因此,从这个角度提出一种基于注意力掩码来屏蔽特征的正则化方法,通过注意力掩码模块生成注意力掩码,对权重高的特征进行屏蔽,以提升模型泛化性能。实验表明,在3个基准数据集上测试的精度相较于基线模型分别提升2.6%、2.0%、4.2%,证明该方法既能提升模型在未知领域上的性能,也体现了其在领域泛化数据集上的普适性。 展开更多
关键词 领域泛化 迁移学习 注意力机制 深度学习 正则化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部