期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于语义分割的粮仓粮食数量变化动态监测方法 被引量:2
1
作者 李智 张艳飞 +6 位作者 杨卫东 但乃禹 张蕙 陈卫东 荆世华 邵辉 任飞燕 《中国粮油学报》 CAS CSCD 北大核心 2024年第4期131-139,共9页
为了高效、准确且低成本监测粮仓粮食数量变化情况,研究提出一种基于语义分割的粮仓粮食数量变化动态监测方法,利用深度学习技术对粮仓仓内摄像机采集的图像进行分析,实现对粮仓仓内粮食数量变化情况的动态监测。通过将监测结果与仓内... 为了高效、准确且低成本监测粮仓粮食数量变化情况,研究提出一种基于语义分割的粮仓粮食数量变化动态监测方法,利用深度学习技术对粮仓仓内摄像机采集的图像进行分析,实现对粮仓仓内粮食数量变化情况的动态监测。通过将监测结果与仓内近期业务数据进行比对,可及时发现违法违规行为线索并预警,提高日常监管的针对性和效率。本研究选取粮仓仓内监控摄像机采集的图像作为数据集,构建了基于DeepLabV3+的粮仓粮食数量变化动态监测模型,通过提取判断粮面变化的参照边界,利用参照边界像素值的变化判断仓内粮食数量变化情况,并通过引入基于MobileNetV2的特征提取网络,提高了模型识别的准确性和计算效率。实验结果表明,该模型平均交并比和平均像素准确率分别达到89.57%和94.53%,参数量为5.818 M,MIoU分别比PSPNet模型和UNet模型高0.95%和0.88%。通过对50个粮仓的测试分析,模型识别得到的仓内粮食数量变化情况与实际情况的一致性为96%,验证了该方法的有效性,为粮仓粮食数量的动态监测提供了新的思路。 展开更多
关键词 深度学习 DeepLabV3+ 粮面识别 语义分割
下载PDF
基于图像重识别的粮仓粮食数量变化检测方法
2
作者 邵辉 《粮食储藏》 2024年第3期37-42,共6页
图像重识别技术作为人工智能领域的新技术,近年来已在多个领域得到了广泛应用。本文旨在提出一种基于图像重识别技术的粮仓内粮食数量变化检测方法,利用新兴科技赋能农业生产,实现对粮食数量变化的自动化监测。该方法相比于传统方法拥... 图像重识别技术作为人工智能领域的新技术,近年来已在多个领域得到了广泛应用。本文旨在提出一种基于图像重识别技术的粮仓内粮食数量变化检测方法,利用新兴科技赋能农业生产,实现对粮食数量变化的自动化监测。该方法相比于传统方法拥有受人工干预影响小、部署和维护成本低、灵敏度高等优势,相比于其他机器学习方法,具有精准度高、适应性强的特点。构建了针对仓内粮食图像的图像重识别模型,以此提取不同时间点的仓内粮食图像的高维特征,借助特征相似性判断仓内粮食是否发生了变化。通过实验验证,该方法在粮食数量变化检测方面的精准率达到96.6%,召回率达到96.2%,相比其他基于计算机视觉技术的检测方法有明显提升,为粮仓粮食数量变化的自动化监测提供了一种基于新质生产力的思路和方法,促进农业生产力发展由量变到质变,加快推进农业深度转型升级,实现农业高质量发展。 展开更多
关键词 新质生产力 深度学习 目标重识别 粮库监管图像 仓储
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部