期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于压缩K近邻边界向量的支持向量预抽取算法
被引量:
3
1
作者
王石
蒋宁宁
杨舒卉
《海军工程大学学报》
CAS
北大核心
2018年第6期74-79,共6页
针对支持向量机处理大数据量时存在的训练时间、内存空间消耗过大的问题,首先提出了一种压缩K-近邻边界向量的支持向量预抽取算法(CKNN),并进行了仿真。仿真结果表明:CKNN算法无论对于线性可分数据集,还是高度非线性的螺旋曲线数据集,...
针对支持向量机处理大数据量时存在的训练时间、内存空间消耗过大的问题,首先提出了一种压缩K-近邻边界向量的支持向量预抽取算法(CKNN),并进行了仿真。仿真结果表明:CKNN算法无论对于线性可分数据集,还是高度非线性的螺旋曲线数据集,均能在推广能力较小损失的前提下,大幅裁剪训练样本;然后,进一步采用5个UCI标准数据集仿真验证CKNN的有效性,结果表明:大数据量情况下效果更优,但代价是SVM推广能力略有损失。
展开更多
关键词
支持向量机
边界向量
K-近邻
压缩近邻
下载PDF
职称材料
题名
基于压缩K近邻边界向量的支持向量预抽取算法
被引量:
3
1
作者
王石
蒋宁宁
杨舒卉
机构
海军
工程大学科研学术处
海军指挥自动化工作站网络室
海军
工程大学教研保障中心
出处
《海军工程大学学报》
CAS
北大核心
2018年第6期74-79,共6页
文摘
针对支持向量机处理大数据量时存在的训练时间、内存空间消耗过大的问题,首先提出了一种压缩K-近邻边界向量的支持向量预抽取算法(CKNN),并进行了仿真。仿真结果表明:CKNN算法无论对于线性可分数据集,还是高度非线性的螺旋曲线数据集,均能在推广能力较小损失的前提下,大幅裁剪训练样本;然后,进一步采用5个UCI标准数据集仿真验证CKNN的有效性,结果表明:大数据量情况下效果更优,但代价是SVM推广能力略有损失。
关键词
支持向量机
边界向量
K-近邻
压缩近邻
Keywords
SVM
boundary vector
K-nearest neighbor
compression nearest neighbor
分类号
TP391.45 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于压缩K近邻边界向量的支持向量预抽取算法
王石
蒋宁宁
杨舒卉
《海军工程大学学报》
CAS
北大核心
2018
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部