为解决轨迹聚类问题,提出一种新的无监督轨迹聚类及聚类有效性评估方法。通过建立双层字符串轨迹模型,计算得到轨迹间距离并用作聚类依据。提出轨迹同距点比例的概念,以此作为聚类工具,并采用类内平均同距点比例作为聚类有效性评价值。...为解决轨迹聚类问题,提出一种新的无监督轨迹聚类及聚类有效性评估方法。通过建立双层字符串轨迹模型,计算得到轨迹间距离并用作聚类依据。提出轨迹同距点比例的概念,以此作为聚类工具,并采用类内平均同距点比例作为聚类有效性评价值。利用麻省理工大学(Massachusetts Institute of Technology,MIT)停车场行人路径数据集进行实验,实验结果表明,新的无监督聚类算法能较好地完成轨迹聚类任务,平均类内同距点比例能够很好地衡量分类效果。展开更多
文摘为解决轨迹聚类问题,提出一种新的无监督轨迹聚类及聚类有效性评估方法。通过建立双层字符串轨迹模型,计算得到轨迹间距离并用作聚类依据。提出轨迹同距点比例的概念,以此作为聚类工具,并采用类内平均同距点比例作为聚类有效性评价值。利用麻省理工大学(Massachusetts Institute of Technology,MIT)停车场行人路径数据集进行实验,实验结果表明,新的无监督聚类算法能较好地完成轨迹聚类任务,平均类内同距点比例能够很好地衡量分类效果。