期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度迁移学习的车辆信息识别方法
被引量:
2
1
作者
童强
李太君
刘笑嶂
《电视技术》
2019年第1期66-71,共6页
针对在深度卷积神经网络中存在对样本数据需求量大和过拟合的问题,提出一种基于深度网络迁移学习的车辆信息识别方法。该方法通过在ImageNet数据集上预训练的深度网络VGG-19进行同构空间下的特征迁移;结合改进的模型损失函数Softmax搭...
针对在深度卷积神经网络中存在对样本数据需求量大和过拟合的问题,提出一种基于深度网络迁移学习的车辆信息识别方法。该方法通过在ImageNet数据集上预训练的深度网络VGG-19进行同构空间下的特征迁移;结合改进的模型损失函数Softmax搭建网络全连接层,并冻结中低层卷积层、利用不同学习率来微调高层卷积层和全连接层参数。然后利用车辆数据集进行实验验证,结果表明该方法能在训练精度与测试精度上有较高的准确识别率,其中测试准确识别率达到97.73%;同时解决了样本数据不足带来的模型过拟合的问题,具有良好的鲁棒性。
展开更多
关键词
深度学习
迁移学习
损失函数
车辆信息识别
下载PDF
职称材料
题名
基于深度迁移学习的车辆信息识别方法
被引量:
2
1
作者
童强
李太君
刘笑嶂
机构
海南大学
信息
科学技术学院
海南大学省重点internet信息检索实验室
出处
《电视技术》
2019年第1期66-71,共6页
基金
国家自然科学基金项目(61562017)
文摘
针对在深度卷积神经网络中存在对样本数据需求量大和过拟合的问题,提出一种基于深度网络迁移学习的车辆信息识别方法。该方法通过在ImageNet数据集上预训练的深度网络VGG-19进行同构空间下的特征迁移;结合改进的模型损失函数Softmax搭建网络全连接层,并冻结中低层卷积层、利用不同学习率来微调高层卷积层和全连接层参数。然后利用车辆数据集进行实验验证,结果表明该方法能在训练精度与测试精度上有较高的准确识别率,其中测试准确识别率达到97.73%;同时解决了样本数据不足带来的模型过拟合的问题,具有良好的鲁棒性。
关键词
深度学习
迁移学习
损失函数
车辆信息识别
Keywords
deep learning
transfer learning
loss function
vehicle information identification
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度迁移学习的车辆信息识别方法
童强
李太君
刘笑嶂
《电视技术》
2019
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部