期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度学习在视频对象分割中的应用与展望 被引量:13
1
作者 陈加 陈亚松 +3 位作者 李伟浩 田元 刘智 何英 《计算机学报》 EI CSCD 北大核心 2021年第3期609-631,共23页
视频对象分割是指在给定的一段视频序列的各帧图像中,找出属于特定前景对象的所有像素点位置区域.随着硬件平台计算能力的提升,深度学习受到了越来越多的关注,在视频对象分割领域也取得了一定的进展.本文首先介绍了视频对象分割的主要任... 视频对象分割是指在给定的一段视频序列的各帧图像中,找出属于特定前景对象的所有像素点位置区域.随着硬件平台计算能力的提升,深度学习受到了越来越多的关注,在视频对象分割领域也取得了一定的进展.本文首先介绍了视频对象分割的主要任务,并总结了该任务所面临的挑战.其次,对开放的视频对象分割常用数据集进行了简要概述,并介绍了通用的性能评估标准.接着,综述了视频对象分割的研究现状,详细地分析了当前的各种方法,并将它们划分为三大类:半监督的方法,即给出视频第一帧图像中感兴趣对象的详细人工真值标注,分割出视频剩余图像中的感兴趣对象;无监督的方法,即不给任何人工标注信息,自动识别并分割出视频中的前景对象;交互式的方法,即在分割过程中,通过人工交互式的参与,结合粗略的人工标注先验信息,进行视频对象分割.第三类方法的条件相当于前两者的折中:相对于第一类方法,它虽然需要人工的参与,但只需要少量的标注工作量;相对于第二类方法,它给视频序列中某些帧的图像适当地添加了一些人工标注信息,从而更具针对性.最后,对深度学习在视频对象分割任务中的应用,进行了总结和展望. 展开更多
关键词 视频对象分割 深度学习 半监督方法 无监督方法 交互式方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部