针对信噪比较低时,多重信号分类(Multiple Signal Classification,MUSIC)算法方位谱背景级较高的问题,提出了一种解卷积的MUSIC方位估计算法(Deconvolvecd MUSIC,D-MUSIC)。该方法用一个类似冲激函数作为MUSIC算法输出方位谱的点散...针对信噪比较低时,多重信号分类(Multiple Signal Classification,MUSIC)算法方位谱背景级较高的问题,提出了一种解卷积的MUSIC方位估计算法(Deconvolvecd MUSIC,D-MUSIC)。该方法用一个类似冲激函数作为MUSIC算法输出方位谱的点散射函数(Point Scattering Function,PSF),然后基于解卷积图像复原理论,利用该点散射函数和RichardsonLucy(R-L)迭代算法对MUSIC算法的方位谱进行解卷积,获得D-MUSIC算法的方位谱,达到降低方位谱背景级的目的。仿真表明,该方法继承了MUSIC算法的高分辨性能,且可以明显降低方位谱的背景级,具有较好的方位估计性能。对南海海上试验的水平阵数据进行处理,分析比较了利用MUSIC算法和解卷积MUSIC算法获得的方位谱时间历程图,分析结果有效验证了D-MUSIC算法性能的优越性。展开更多