针对军事领域的知识图谱的应用,设计实现了基于军事领域知识图谱的合成旅指挥员智能问答系统。首先,通过对军事领域应用的特点分析,设计实现了基于Jieba工具的中文分词模块、基于双向长短期记忆网络-条件随机场(Bidirectional Long Shor...针对军事领域的知识图谱的应用,设计实现了基于军事领域知识图谱的合成旅指挥员智能问答系统。首先,通过对军事领域应用的特点分析,设计实现了基于Jieba工具的中文分词模块、基于双向长短期记忆网络-条件随机场(Bidirectional Long Short Term Memory-Conditional Random Field,BiLSTM-CRF)的命名实体识别模块和基于Cypher语言的问题查询模块等关键模块;然后,构建了基于环球军事网以及新浪军事中爬取到的新闻数据构建数据集,进而基于此数据集进行命名实体识别算法实验对比分析;最后,对BiLSTM-CRF算法进行参数调优,使得模型的识别效果达到最优,进而对系统进行了展示。展开更多
基金the National Natural Science Foundation of China under Grant No.60603085,60736019(国家自然科学基金)the National High- Tech Research and Development Plan of China under Grant No.2006AA01Z304,2007AA01Z336(国家高技术研究发展计划(863))the National Grand Fundamental Research 973 Program of China under Grant No.2006CB303104(国家重点基础研究发展规划(973)).
文摘针对军事领域的知识图谱的应用,设计实现了基于军事领域知识图谱的合成旅指挥员智能问答系统。首先,通过对军事领域应用的特点分析,设计实现了基于Jieba工具的中文分词模块、基于双向长短期记忆网络-条件随机场(Bidirectional Long Short Term Memory-Conditional Random Field,BiLSTM-CRF)的命名实体识别模块和基于Cypher语言的问题查询模块等关键模块;然后,构建了基于环球军事网以及新浪军事中爬取到的新闻数据构建数据集,进而基于此数据集进行命名实体识别算法实验对比分析;最后,对BiLSTM-CRF算法进行参数调优,使得模型的识别效果达到最优,进而对系统进行了展示。