期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于半监督学习的数据流集成分类算法 被引量:18
1
作者 徐文华 覃征 常扬 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期292-299,共8页
已有的数据流分类算法多采用有监督学习,需要使用大量已标记数据训练分类器,而获取已标记数据的成本很高,算法缺乏实用性.针对此问题,文中提出基于半监督学习的集成分类算法SEClass,能利用少量已标记数据和大量未标记数据,训练和更新集... 已有的数据流分类算法多采用有监督学习,需要使用大量已标记数据训练分类器,而获取已标记数据的成本很高,算法缺乏实用性.针对此问题,文中提出基于半监督学习的集成分类算法SEClass,能利用少量已标记数据和大量未标记数据,训练和更新集成分类器,并使用多数投票方式对测试数据进行分类.实验结果表明,使用同样数量的已标记训练数据,SEClass算法与最新的有监督集成分类算法相比,其准确率平均高5.33%.且运算时间随属性维度和类标签数量的增加呈线性增长,能够适用于高维、高速数据流分类问题. 展开更多
关键词 属性权值 概念漂移 集成分类器 同质性 K均值聚类 半监督学习 数据流分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部