以物理结构及功能上高度集成为目标的模块化多电平变复合变换器(modular multilevel hybrid converter,MMHC)电池储能系统(battery energy storage system,BESS)可以直接并入中、低压交流电网,相较于其他电池储能系统具有效率更高、成...以物理结构及功能上高度集成为目标的模块化多电平变复合变换器(modular multilevel hybrid converter,MMHC)电池储能系统(battery energy storage system,BESS)可以直接并入中、低压交流电网,相较于其他电池储能系统具有效率更高、成本更低的优点,有利于解决分布式新能源发电侧出力的间歇性和不确定性问题,实现用户侧负荷的削峰填谷。根据MMHC-BESS拓扑结构特点,给出了MHHC-BESS的调制策略,针对多电平变换器电池储能系统中电池组采用安时积分法配合开路电压法对电池荷电状态(state of charge,SOC)估计效果差的问题及MMHC-BESS能量利用率的问题,分别提出了基于扩展卡尔曼的电池模型闭环SOC估计策略及二层SOC均衡策略,实现了MMHC-BESS所有电池组SOC的精确估计及MMHC-BESS的相间、相内所有电池组模块SOC均衡,并搭建了仿真模型,验证了所提SOC估计方法及均衡策略的有效性。展开更多
文摘以物理结构及功能上高度集成为目标的模块化多电平变复合变换器(modular multilevel hybrid converter,MMHC)电池储能系统(battery energy storage system,BESS)可以直接并入中、低压交流电网,相较于其他电池储能系统具有效率更高、成本更低的优点,有利于解决分布式新能源发电侧出力的间歇性和不确定性问题,实现用户侧负荷的削峰填谷。根据MMHC-BESS拓扑结构特点,给出了MHHC-BESS的调制策略,针对多电平变换器电池储能系统中电池组采用安时积分法配合开路电压法对电池荷电状态(state of charge,SOC)估计效果差的问题及MMHC-BESS能量利用率的问题,分别提出了基于扩展卡尔曼的电池模型闭环SOC估计策略及二层SOC均衡策略,实现了MMHC-BESS所有电池组SOC的精确估计及MMHC-BESS的相间、相内所有电池组模块SOC均衡,并搭建了仿真模型,验证了所提SOC估计方法及均衡策略的有效性。