期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
电催化氮集成二氧化碳还原反应合成有机氮化合物
1
作者 孔燕 危伟 +1 位作者 徐乐凯 陈晨 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第8期4-7,共4页
以化石能源如煤、石油和天然气为主要能源的社会发展模式,不仅导致不可再生资源枯竭,还引发大气中CO_(2)浓度持续上升的问题。随着人们对能源结构认识的深化和生态环境保护意识的增强,寻求有效的清洁CO_(2)固定和转化技术已成为研究热... 以化石能源如煤、石油和天然气为主要能源的社会发展模式,不仅导致不可再生资源枯竭,还引发大气中CO_(2)浓度持续上升的问题。随着人们对能源结构认识的深化和生态环境保护意识的增强,寻求有效的清洁CO_(2)固定和转化技术已成为研究热点。这些技术可利用太阳能、风能、潮汐能和地热能等可再生能源,促进人工碳循环、碳储存,并缓解环境恶化。在众多CO_(2)固定和催化转化技术中,常温常压下的CO_(2)还原技术受到可再生能源的驱动,有助于人工碳循环、碳储存,减轻环境退化。目前,水溶液中的电催化CO_(2)还原研究已取得显著进展,但在制造其他重要的有机小分子,如尿素、酰胺、胺及其衍生物,甚至氨基酸方面,仍有未开发的潜力。这些产品在肥料、化学品合成、医药化学和航空工业等领域有广泛应用,引起了广泛研究兴趣。通过氮集成的电催化CO_(2)还原反应制造有机氮化合物,能显著提高CO_(2)电还原技术的实际应用价值,同时也为生物小分子的起源提供参考,因此具有重要意义。然而,该过程涉及CO_(2)和含氮无机物的电化学耦合,包含多步电子和质子转移过程,因此面临着缓慢的动力学和复杂的反应机制。在本综述中,我们详细讨论了氮集成电催化CO_(2)还原生成不同产物的具体反应路径和合理的催化剂设计策略,这对于指导高效电催化剂的设计至关重要。尽管已经通过一系列策略取得了一定的研究进展,但仍然存在一些需要解决的挑战,这限制了它们在大规模实际应用中的发展。最后,我们对该领域的发展限制和改进的可能方向进行了讨论,希望这能有助于氮集成电催化CO_(2)还原反应催化剂的进一步发展。 展开更多
关键词 CO_(2)还原反应 含氮化合物 有机氮化合物 电催化 C-N偶联
下载PDF
Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO_(2)electroreduction to CH4
2
作者 Hao Dai Tao Song +8 位作者 Xian Yue Shuting Wei Fuzhi Li Yanchao Xu Siyan Shu Ziang Cui Cheng Wang Jun Gu Lele Duan 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期123-132,共10页
Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2)reduction reaction and understanding the structure-property relationship.Herei... Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2)reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N2-bidentate(note that N2-bidentate site=N^N-bidentate site;N2¹dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N2-bidentate site,a Cu SAC with isolated undercoordinated Cu-N2 sites(Cu1.0/N2-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N2-GDY exhibits the highest Faradaic efficiency(FE)of 80.6%for CH4 in electrocatalytic reduction of CO_(2)at-0.96 V vs.RHE,and the partial current density of CH4 is 160 mA cm^(-2).The selectivity for CH4 is maintained above 70%when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N2-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N2 sites are more favorable in generating key*COOH and*CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N2 sites toward efficient electrocatalysis. 展开更多
关键词 Carbon dioxide reduction ELECTROCATALYSIS Cu single-atom catalyst N-containing graphdiyne Methane
下载PDF
智能代理技术及其在售后服务中的应用 被引量:3
3
作者 杨晓龙 吴秋峰 +1 位作者 张佐 王尚武 《计算机工程与应用》 CSCD 北大核心 2002年第18期245-247,共3页
文章主要介绍了一种新的技术—智能代理技术。并在此基础上简要介绍了作者参与的某公司基于多代理的售后服务系统的开发工作,重点介绍了其中的故障技术支持子系统。
关键词 智能代理 售后服务 人工智能 多代理系统 协商算法 计算机
下载PDF
2D materials modulating layered double hydroxides for electrocatalytic water splitting 被引量:5
4
作者 Jinling Cheng Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1380-1398,共19页
Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered doubl... Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications.Transition metal‐based layered double hydroxides(LDHs)have been proved to be one of the most efficient materials for oxygen evolution reaction(OER),however,still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction(HER),which largely inhibited the overall water splitting efficiency.To address this dilemma,enormous approaches including doping regulation,intercalation tuning and defect engineering are therefore rationally designed and developed.Herein,we focus on the recent exciting progress of LDHs hybridization with other two‐dimensional(2D)materials for water splitting reactions,not barely for enhancing OER efficiency but also for boosting HER activity.Particularly,the structural features,morphologies,charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details.The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance.The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs,which will contribute to energy conversion and storage. 展开更多
关键词 Layered double hydroxide 2D materials HYBRIDIZATION Synergistic effect Electrocatalytic water splitting
下载PDF
Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction 被引量:13
5
作者 Qiuyu Chen Sijia Li +4 位作者 Hongyi Xu Guofeng Wang Yang Qu Peifen Zhu Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期514-523,共10页
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th... A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction. 展开更多
关键词 Co-MOF g-C3N4 nanosheets Charge separation Visible-light photoactivity Photocatalytic CO2 conversion
下载PDF
Ordered mesoporous Cu-ZnO-Al_2O_3 adsorbents for reactive adsorption desulfurization with enhanced sulfur saturation capacity 被引量:5
6
作者 YaqingLiua YuanPanb +2 位作者 HongyingWanga YunqiLiua ChenguangLiua 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第9期1543-1551,共9页
To enhance sulfur adsorption and reactive activity, ordered mesoporous Cu-ZnO-Al2O3 adsorbents were prepared by a novel one-pot evaporation-induced self-assembly strategy using P123 as a structure-directing agent and ... To enhance sulfur adsorption and reactive activity, ordered mesoporous Cu-ZnO-Al2O3 adsorbents were prepared by a novel one-pot evaporation-induced self-assembly strategy using P123 as a structure-directing agent and ethanol as the solvent for reactive adsorption desulfurization. The metal oxide precursor molecules around P123 micellized, and self-assembly simultaneously occurred during evaporation from an ethanol solution at 60 °C, leading to the formation of the p6 mm hexagonal symmetry mesoporous structure. Characterization results prove that the Cu-ZnO-Al2O3 adsorbents possess an ordered mesoporous structure with high thermal stability, large surface area(386–226 m2/g), large pore volume(0.60–0.46 cm3/g), and good dispersion of ZnO and Cu, which is beneficial for transforming S-compounds to ZnO. The sulfur saturation capacity of the ordered-mesoporous-structure Cu-ZnO-Al2O3 adsorbents is larger(49.4 mg/g) than that of the unordered mesoporous structure(13.5 mg/g). 展开更多
关键词 Cu‐ZnO‐Al2O3Or deredmesoporous structure One‐potevaporation‐induced self‐assembly Reactiveads orptiondesul furization Sulfursaturation capacity
下载PDF
Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots 被引量:10
7
作者 Jing Xu Jin Huang +1 位作者 Zhouping Wang Yongfa Zhu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期474-484,共11页
Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uni... Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uniform dispersion on the surface/inner channels of PCNO,as well as intimate contact with PCNO through hydrogen bonding,π-π,and chemical bonding interactions.In contrast with PCNO,the ox-GQDs/PCNO composite photocatalysts possessed improved light-harvesting ability,higher charge-transfer efficiency,enhanced photooxidation capacity,and increased amounts of reactive species due to the upconversion properties,strong electron capturing ability,and peroxidase-like activity of the ox-GQDs.Therefore,the visible-light photocatalytic degradation and disinfection performances of the ox-GQDs/PCNO composite were significantly enhanced.Remarkably,the composite with a 0.2 wt.% deposited amount of ox-GQDs(ox-GQDs-0.2%/PCNO)exhibited optimum amaranth photodegradation activity,with a corresponding rate about 3.1 times as high as that of PCNO.In addition,ox-GQDs-0.2%/PCNO could inactivate about 99.6%of Escherichia coli(E.coli)cells after 4 h of visible light irradiation,whereas only^31.9% of E.coli cells were killed by PCNO.Furthermore,h+,·O2-,and·OH were determined to be the reactive species generated in the photocatalytic process of the ox-GQDs/PCNO system;these species can thoroughly mineralize azo dyes and effectively inactivate pathogenic bacteria. 展开更多
关键词 Photocatalysis Oxidized nanoporous g-C3N4 Graphene oxide quantum dots Degradation DISINFECTION
下载PDF
Rational design and precise manipulation of nano‐catalysts 被引量:1
8
作者 Qinggang Liu Junguo Ma Chen Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期898-912,共15页
Nano‐catalysis plays a vital role in the chemical transformations and significantly impacts the booming modern chemical industry.The rapid technological enhancements have resulted in serious energy and environmental ... Nano‐catalysis plays a vital role in the chemical transformations and significantly impacts the booming modern chemical industry.The rapid technological enhancements have resulted in serious energy and environmental issues,which are currently spurring the exploration of the novel nano‐catalysts in diverse fields.In order to develop the efficient nano‐catalysts,it is essential to understand their fundamental physicochemical properties,including the coordination structures of the active centers and substrate‐adsorbate interactions.Subsequently,the nano‐catalyst design with precise manipulation at the atomic level can be attained.In this account,we have summarized our extensive investigation of the factors impacting nano‐catalysis,along with the synthetic strategies developed to prepare the nano‐catalysts for applications in electrocatalysis,photocatalysis and thermocatalysis.Finally,a brief conclusion and future research directions on nano‐catalysis have also been presented. 展开更多
关键词 Nano‐catalysis Single‐atom catalysts Water splitting Oxygen reduction reaction CO_(2)reduction reaction Silane oxidation Benzene oxidation N‐formylation
下载PDF
Non‐noble metal single‐atom catalyst with MXene support:Fe1/Ti_(2)CO_(2) for CO oxidation 被引量:3
9
作者 Chun Zhu Jin‐Xia Liang +1 位作者 Yang‐Gang Wang Jun Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1830-1841,共12页
MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum c... MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts. 展开更多
关键词 Single‐atom catalyst Density functional theory Ti_(2)CO_(2)MXene CO oxidation
下载PDF
Photo-thermal CO_(2) reduction with methane on group Ⅷ metals:In situ reduced WO_(3) support for enhanced catalytic activity 被引量:3
10
作者 Huimin Liu Xianguang Meng +3 位作者 Weiwei Yang Guixia Zhao Dehua He Jinhua Ye 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期1976-1982,共7页
Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal... Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal catalysts supported by optical material WO_(3) are more effective for photo-thermal CRM,giving catalytic activities with visible light assistance that are 1.4-2.4 times higher than that achieved under thermal conditions.The activity enhancement(1.4-2.4 times)was comparable to that achieved with plasmonic-Au-promoted catalysts(1.7 times).Characterization results indicated that WO_(3) was partially reduced to WO_(3-x) in situ under the reductive CRM reaction atmosphere,and that WO_(3-x) rather than WO_(3) enhanced the activities with visible light assistance.Our method provides a promising approach for improving the activity of catalysts under light irradiation. 展开更多
关键词 Tungsten oxide Visible light In situ reduction PHOTOCATALYSIS CO_(2) reduction
下载PDF
Buffer anion effects on water oxidation catalysis: The case of Cu(Ⅲ) complex 被引量:1
11
作者 Qifa Chen Haoyi Du Mingtian Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第8期1338-1344,共7页
Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition me... Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts. 展开更多
关键词 Artificial photosynthesis Water oxidation Redox-active ligand Copper catalyst Buffer anion effect
下载PDF
Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction 被引量:2
12
作者 Gong Zhang Jing-hong Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期517-522,615,共7页
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we designed an efficient Co304 electrocatalyst using a pyrolysis stra... Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we designed an efficient Co304 electrocatalyst using a pyrolysis strategy for oxygen evolution reaction (OER). Morphological characterization confirmed the ultra-thin structure of nanosheet. Further, the existence of oxygen vacancies was obviously evidenced by the X-ray photoelectron spectroscopy and elec- tron spin resonance spectroscopy. The increased surface area of Co3O4 ensures more exposed sites, whereas generated oxygen vacancies on Co3O4 surface create more active defects. The two scenarios were beneficial for accelerating the OER across the interface between the anode and electrolyte. As expected, the optimized Co3O4 nanosheets can catalyze the OER eftciently with a low overpotential of 310 mV at current density of 10 mA/cm2 and remarkable long-term stability in 1.0 mol/L KOH. 展开更多
关键词 ELECTROCATALYST OER Oxygen vacancy CO3O4
下载PDF
On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WOx in the hydrogenolysis reaction 被引量:6
13
作者 Maoxiang Zhou Man Yang +6 位作者 Xiaofeng Yang Xiaochen Zhao Lei Sun Weiqiao Deng Aiqin Wang Jun Li Tao Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期524-532,共9页
Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic proce... Owing to the atomic dispersion of active sites via electronic interaction with supports,single-atom catalysts(SACs)grant maximum utilization of metals with unique activity and/or selectivity in various catalytic processes.However,the stability of single atoms under oxygen-poor conditions,and the mechanism of hydrogen activation on SACs remain elusive.Here,through a combination of theoretical calculation and experiments,the stabilization of metal single atoms on tungsten oxide and its catalytic properties in H2 activation are investigated.Our calculation results indicate that the oxygen defects on the WO3(001)surface play a vital role in the stabilization of single metal atoms through electron transfer from the oxygen vacancies to the metal atoms.In comparison with Pd and Au,Pt single atoms possess greatly enhanced stability on the WOx(001)surface and carry negative charge,facilitating the dissociation of H-2 to metal-H species(Hδ-)via homolytic cleavage of H2 similar to that occurring in metal ensembles.More importantly,the facile diffusion of Pt-H to the WOx support results in the formation of Bronsted acid sites(Hδ+),imparting bifunctionality to Pt1/WOx.The dynamic formation of Br?nsted acid sites in hydrogen atmosphere proved to be the key to chemoselective hydrogenolysis of glycerol into 1,3-propanediol,which was experimentally demonstrated on the Pt1/WOx catalyst. 展开更多
关键词 Single-atom catalyst Pt Density function theory Hydrogen dissociation Tungsten oxide
下载PDF
Catalytic ativities of single-atom catalysts for CO oxidation: Pt_1/FeO_x vs. Fe_1/FeO_x 被引量:6
14
作者 Jinxia Liang Xiaofeng Yang +2 位作者 Congqiao Xu Tao Zhang Jun Li 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1566-1573,共8页
An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other ... An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation. 展开更多
关键词 Single‐atom catalyst FeOx substrate Density functional theory Heterogeneous catalysis CO oxidation
下载PDF
Photodeposition of earth‐abundant cocatalysts in photocatalytic water splitting:Methods,functions,and mechanisms 被引量:2
15
作者 Hui Zhao Qinyi Mao +2 位作者 Liang Jian Yuming Dong Yongfa Zhu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1774-1804,共31页
Photocatalytic water splitting based on semiconductor photocatalysts is a promising approach for producing carbon‐neutral,sustainable,and clean H_(2) fuel.Cocatalyst loading,which is an appealing strategy,has been ex... Photocatalytic water splitting based on semiconductor photocatalysts is a promising approach for producing carbon‐neutral,sustainable,and clean H_(2) fuel.Cocatalyst loading,which is an appealing strategy,has been extensively employed to improve the photocatalytic efficiency semiconductors.In view of the high cost and rare preservation of noble metal cocatalysts that significantly hinder their utilization for large‐scale energy production,various cocatalysts comprising earth‐abundant ele‐ments have been developed as noble‐metal‐free candidates using different methods to boost pho‐tocatalytic water splitting.Among these preparation strategies,photodeposition has attracted tre‐mendous attention in the deposition of earth‐abundant cocatalysts owing to its simplicity and mod‐erate availability,improved interfacial charge separation and transfer,and abundant active sites on the surface.In this review,we first summarize the deposition principles,deposition advantages,categories of cocatalysts,roles of cocatalysts,influencing factors,modification strategies,and design considerations in the photodeposition of earth‐abundant cocatalysts.The photodeposited earth‐abundant cocatalysts for the photocatalytic H_(2) evolution half reaction,photocatalytic O_(2) evo‐lution half reaction,and overall photocatalytic water splitting are discussed.Finally,some perspec‐tives on the challenges and possible future directions for the photodeposition of earth‐abundant cocatalysts in photocatalytic water splitting are presented. 展开更多
关键词 PHOTODEPOSITION Noble‐metal‐free cocatalyst PHOTOCATALYSIS Water splitting
下载PDF
Breaking the scaling relations for efficient N_(2)-to-NH_(3) conversion by a bowl active site design:Insight from LaRuSi and isostructural electrides 被引量:1
16
作者 Ya-Fei Jiang Jin-Cheng Liu +2 位作者 Cong-Qiao Xu Jun Li Hai Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2183-2192,共10页
The design of optimal heterogeneous catalysts for N_(2)-to-NH_(3) conversion is often dictated by the scaling relations,which result in a volcano curve that poses a limit on the catalytic performance.Herein,we reveal ... The design of optimal heterogeneous catalysts for N_(2)-to-NH_(3) conversion is often dictated by the scaling relations,which result in a volcano curve that poses a limit on the catalytic performance.Herein,we reveal a bowl active site that can break the scaling relations,through investigating the catalytic mechanisms of N_(2)-to-NH_(3) conversion on the lanthanide intermetallic electride catalyst LaRuSi by first-principles modeling.This bowl active site,composed of four surface La cations and one subsurface Si atom rich in electrons,plays the key role in enabling efficient catalysis.With adaptive electrostatic and orbital interactions,the bowl active site promotes the adsorption and activation of N_(2) that delivers facile cleavage of N-N bond,while destabilizes the adsorptions of ^(*)NH_(x)(x=1,2,3)species,which facilitates the release of the final NH_(3) product.By comparison with other electride catalysts isostructural to LaRuSi,we confirm the breaking of scaling relations between the adsorptions of ^(*)NH_(x) species and that of^(*)N on the bowl active site.Thus,this bowl active site presents a design concept that breaks the scaling relations for highly efficient heterogeneous catalysis of N_(2)-to-NH_(3) conversion. 展开更多
关键词 N_(2)-to-NH_(3)conversion Scaling relations Heterogeneous catalyst design First-principles calculations
下载PDF
Rapid synthesis of Pd single‐atom/cluster as highly active catalysts for Suzuki coupling reactions 被引量:2
17
作者 Hehe Wei Xiaoyang Li +7 位作者 Bohan Deng Jialiang Lang Ya Huang Xingyu Hua Yida Qiao Binghui Ge Jun Ge Hui Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1058-1065,共8页
Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annea... Palladium(Pd)‐based catalysts are essential to drive high‐performance Suzuki coupling reactions,which are powerful tools for the synthesis of functional organic compounds.Herein,we developed a solution‐rapid‐annealing process to stabilize nitrogen‐mesoporous carbon supported Pd single‐atom/cluster(Pd/NMC)material,which provided a catalyst with superior performance for Suzuki coupling reactions.In comparison with commercial palladium/carbon(Pd/C)catalysts,the Pd/NMC catalyst exhibited significantly boosted activity(100%selectivity and 95%yield)and excellent stability(almost no decay in activity after 10 reuse cycles)for the Suzuki coupling reactions of chlorobenzenes,together with superior yield and excellent selectivity in the fields of the board scope of the reactants.Moreover,our newly developed rapid annealing process of precursor solutions is applied as a generalized method to stabilize metal clusters(e.g.Pd,Pt,Ru),opening new possibilities in the construction of efficient highly dispersed metal atom and sub‐nanometer cluster catalysts with high performance. 展开更多
关键词 Pd single‐atom/cluster catalyst Suzuki coupling reactions Solution rapid annealing Energy barrier High yield
下载PDF
Probing the Electronic Structure of the CoB16- Drum Complex: Unusual Oxidation State of Co-1 被引量:1
18
作者 Wan-Lu Li Wan-Lu Lia +4 位作者 Zhi-Yu Jiang Wei-Jia Chen Han-Shi Hu Lai-Sheng Wang Jun Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第2期241-247,I0003,共8页
Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel ... Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel nanostructures. The CoB16- cluster was found to be composed of a central Co atom coordinated by two fused B8 rings in a tubular structure, representing the potential embryo of metal-filled boron nanotubes and providing opportunities to design one-dimensional metal-boron nanostructures. Here we report improved photoelectron spectroscopy and a more in-depth electronic structure analysis of CoB16-, providing further insight into the chemical bonding and stability of the drum-like doped boron tubular structures. Most interestingly, we find that the central Co atom has an unusually low oxidation state of ?1 and neutral CoB16 can be viewed as a charge transfer complex (Co-@BB16+), suggesting both covalent and electrostatic interactions between the dopant and the boron drum. 展开更多
关键词 Photoelectron spectroscopy Metal-boron clusters Ab initio calculations Chemical bonding
下载PDF
Microbial Electrolysis Cells for Hydrogen Production 被引量:2
19
作者 Li-juan Xiang Ling Dai +3 位作者 Ke-xin Guo Zhen-hai Wen Su-qin Ci Jing-hong Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期263-284,I0002,共23页
Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microb... Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microbial electrocatalysis.However,the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost.In this review,we will focus on the recent research progress of MEC for H2 production.First,we present a brief introduction of MEC technology and the operating mechanism for H2 production.Then,the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed.We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation.Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance. 展开更多
关键词 Microbial electrolysis cells H2 production ELECTROCATALYSIS Wastewater treatment Electrode materials
下载PDF
Few‐layer carbon nitride photocatalysts for solar fuels and chemicals:Current status and prospects 被引量:2
20
作者 Fangshuai Chen Chongbei Wu +2 位作者 Gengfeng Zheng Liangti Qu Qing Han 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1216-1229,共14页
Converting sunlight directly to fuels and chemicals is a great latent capacity for storing renewable energy.Due to the advantages of large surface area,short diffusion paths for electrons,and more exposed active sites... Converting sunlight directly to fuels and chemicals is a great latent capacity for storing renewable energy.Due to the advantages of large surface area,short diffusion paths for electrons,and more exposed active sites,few‐layer carbon nitride(FLCN)materials present great potential for production of solar fuels and chemicals and set off a new wave of research in the last few years.Herein,the recent progress in synthesis and regulation of FLCN‐based photocatalysts,and their applications in the conversion of sunlight into fuels and chemicals,is summarized.More importantly,the regulation strategies from chemical modification to microstructure control toward the production of solar fuels and chemicals has been deeply analyzed,aiming to inspire critical thinking about the effective approaches for photocatalyst modification rather than developing new materials.At the end,the key scientific challenges and some future trend of FLCN‐based materials as advanced photocatalysts are also discussed. 展开更多
关键词 Few‐layer carbon nitride PHOTOCATALYST Synthesis technique Structure regulation Solar fuels and chemicals
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部