氢氟烃(HFC)/氢氟烃和氢氟烃/碳氢(HC)混合物是两类重要的制冷工质。采用PR状态方程结合Horon-Vidal(HV)混合规则对7种HFC/HFC和7种HFC/HC二元混合物的气液相平衡性质进行了计算,并与PR状态方程结合van der Waals(vdW)混合规则的计算结...氢氟烃(HFC)/氢氟烃和氢氟烃/碳氢(HC)混合物是两类重要的制冷工质。采用PR状态方程结合Horon-Vidal(HV)混合规则对7种HFC/HFC和7种HFC/HC二元混合物的气液相平衡性质进行了计算,并与PR状态方程结合van der Waals(vdW)混合规则的计算结果进行了对比。结果表明,HFC/HFC体系组元性质比较接近,非理想性不强,vdW混合规则即可达到较理想计算效果,HV混合规则对计算精度的提升有限;对非理想性较强的HFC/HC体系,vdW混合规则对共沸性质的描述不够理想,HV混合规则可以显著提升相平衡的计算精度。展开更多
采用温度相关比容平移项的比容平移Soave-Redlich-Kwong(VTSRK)方程计算新工质R1234yf和R1234ze(E)的热力学性质以及两种物质与CO_2的二元混合物性质,混合物计算采用van der Waals混合规则,二元交互作用系数由密度数据拟合得到。对纯净...采用温度相关比容平移项的比容平移Soave-Redlich-Kwong(VTSRK)方程计算新工质R1234yf和R1234ze(E)的热力学性质以及两种物质与CO_2的二元混合物性质,混合物计算采用van der Waals混合规则,二元交互作用系数由密度数据拟合得到。对纯净物计算与专用状态方程进行对比,VTSRK方程比SRK方程显著改善了液相密度表征效果。对混合物的密度计算结果与实验数据进行对比,对于R1234yf+CO_2二元混合体系方程与实验数据相对均方根偏差为1.17%,对于R1234ze(E)+CO_2二元混合体系相对均方根偏差为0.82%。结果显示,采用温度相关比容平移项的VTSRK方程应用于R1234yf和R1234ze(E)纯流体以及R1234yf+CO_2和R1234ze(E)+CO_2密度性质计算,可获得较高精度。展开更多
文摘氢氟烃(HFC)/氢氟烃和氢氟烃/碳氢(HC)混合物是两类重要的制冷工质。采用PR状态方程结合Horon-Vidal(HV)混合规则对7种HFC/HFC和7种HFC/HC二元混合物的气液相平衡性质进行了计算,并与PR状态方程结合van der Waals(vdW)混合规则的计算结果进行了对比。结果表明,HFC/HFC体系组元性质比较接近,非理想性不强,vdW混合规则即可达到较理想计算效果,HV混合规则对计算精度的提升有限;对非理想性较强的HFC/HC体系,vdW混合规则对共沸性质的描述不够理想,HV混合规则可以显著提升相平衡的计算精度。
文摘采用温度相关比容平移项的比容平移Soave-Redlich-Kwong(VTSRK)方程计算新工质R1234yf和R1234ze(E)的热力学性质以及两种物质与CO_2的二元混合物性质,混合物计算采用van der Waals混合规则,二元交互作用系数由密度数据拟合得到。对纯净物计算与专用状态方程进行对比,VTSRK方程比SRK方程显著改善了液相密度表征效果。对混合物的密度计算结果与实验数据进行对比,对于R1234yf+CO_2二元混合体系方程与实验数据相对均方根偏差为1.17%,对于R1234ze(E)+CO_2二元混合体系相对均方根偏差为0.82%。结果显示,采用温度相关比容平移项的VTSRK方程应用于R1234yf和R1234ze(E)纯流体以及R1234yf+CO_2和R1234ze(E)+CO_2密度性质计算,可获得较高精度。