TiO_(2)is a promising photocatalyst with limited use in practical applications owing to its wide bandgap,narrow light response range,and rapid recombination of photoexcited carriers.To address these limitations,a nove...TiO_(2)is a promising photocatalyst with limited use in practical applications owing to its wide bandgap,narrow light response range,and rapid recombination of photoexcited carriers.To address these limitations,a novel 1D/2D TiO_(2)/ZnIn_(2)S_(4)heterostructure was designed according to the principles of the S-scheme heterojunction.The TiO_(2)/ZnIn_(2)S_(4)(TZISx)hybrids prepared via a hydrothermal method afforded significant improvement in photocatalytic hydrogen evolution(PHE)in comparison to pristine TiO_(2)and ZnIn_(2)S_(4).In particular,the optimal TZIS2 sample(mass ratio of ZnIn_(2)S_(4)to TiO_(2)was 0.4)exhibited the highest PHE activity(6.03 mmol/h/g),which was approximately 3.7 and 2.0 times higher than those of pristine TiO_(2)and ZnIn_(2)S_(4),respectively.This improvement in the PHE of the TZIS2 sample could be attributed to the formation of an intimate heterojunction interface,high-efficiency separation of charge carriers,abundant reactive sites,and enhanced light absorption capacity.Notably,theoretical and experimental results demonstrated that the S-scheme mechanism of interfacial electron transfer in the TZISx composites facilitated the transfer and separation of photoexcited charge carriers,resulting in more isolated photoexcited electrons for the PHE reaction.展开更多
文摘TiO_(2)is a promising photocatalyst with limited use in practical applications owing to its wide bandgap,narrow light response range,and rapid recombination of photoexcited carriers.To address these limitations,a novel 1D/2D TiO_(2)/ZnIn_(2)S_(4)heterostructure was designed according to the principles of the S-scheme heterojunction.The TiO_(2)/ZnIn_(2)S_(4)(TZISx)hybrids prepared via a hydrothermal method afforded significant improvement in photocatalytic hydrogen evolution(PHE)in comparison to pristine TiO_(2)and ZnIn_(2)S_(4).In particular,the optimal TZIS2 sample(mass ratio of ZnIn_(2)S_(4)to TiO_(2)was 0.4)exhibited the highest PHE activity(6.03 mmol/h/g),which was approximately 3.7 and 2.0 times higher than those of pristine TiO_(2)and ZnIn_(2)S_(4),respectively.This improvement in the PHE of the TZIS2 sample could be attributed to the formation of an intimate heterojunction interface,high-efficiency separation of charge carriers,abundant reactive sites,and enhanced light absorption capacity.Notably,theoretical and experimental results demonstrated that the S-scheme mechanism of interfacial electron transfer in the TZISx composites facilitated the transfer and separation of photoexcited charge carriers,resulting in more isolated photoexcited electrons for the PHE reaction.