目的建立拉曼光谱法快速、准确、无损地检测猪肉脯样品中掺假鸡肉的方法。方法制备33份猪肉中掺入不同比例鸡肉的肉脯样品,采集拉曼光谱数据,分别采用标准正态变换、多元散射校正、卷积平滑、归一化、一阶导数等5种不同预处理方法,对原...目的建立拉曼光谱法快速、准确、无损地检测猪肉脯样品中掺假鸡肉的方法。方法制备33份猪肉中掺入不同比例鸡肉的肉脯样品,采集拉曼光谱数据,分别采用标准正态变换、多元散射校正、卷积平滑、归一化、一阶导数等5种不同预处理方法,对原始光谱数据进行预处理,采用连续投影算法、竞争性自适应重加权算法及随机蛙跳算法对光谱数据进行特征波长筛选,建立偏最小二乘法(partial least squares,PLS)模型对猪肉脯进行定性定量判别。结果拉曼光谱数据经过多元散射校正处理的效果最佳,竞争性自适应重加权算法竞筛选效果更佳,构建猪肉脯中猪肉含量的PLS定量模型,其预测集决定系数和预测均方根误差分别为0.9762、7.2998。建立的PLS判别模型的校正集和预测集总判别正确率分别为100.00%和98.33%。结论拉曼光谱分析技术可有效用于定性鉴别猪肉脯是否掺伪及定量分析猪肉肉脯中掺入鸡肉的比例,为肉脯掺假的快速无破坏性检测的应用提供支持。展开更多
文摘目的建立拉曼光谱法快速、准确、无损地检测猪肉脯样品中掺假鸡肉的方法。方法制备33份猪肉中掺入不同比例鸡肉的肉脯样品,采集拉曼光谱数据,分别采用标准正态变换、多元散射校正、卷积平滑、归一化、一阶导数等5种不同预处理方法,对原始光谱数据进行预处理,采用连续投影算法、竞争性自适应重加权算法及随机蛙跳算法对光谱数据进行特征波长筛选,建立偏最小二乘法(partial least squares,PLS)模型对猪肉脯进行定性定量判别。结果拉曼光谱数据经过多元散射校正处理的效果最佳,竞争性自适应重加权算法竞筛选效果更佳,构建猪肉脯中猪肉含量的PLS定量模型,其预测集决定系数和预测均方根误差分别为0.9762、7.2998。建立的PLS判别模型的校正集和预测集总判别正确率分别为100.00%和98.33%。结论拉曼光谱分析技术可有效用于定性鉴别猪肉脯是否掺伪及定量分析猪肉肉脯中掺入鸡肉的比例,为肉脯掺假的快速无破坏性检测的应用提供支持。