尽管目前存在许多文本特征选择方法,但是它们都有着一定的局限性。提出一种新的基于群体增量学习(Population Based Incremental Learning)算法的文本特征选择方法,其特点是无需特征集的先验知识和容易实现,并且由于使用了简单分类器性...尽管目前存在许多文本特征选择方法,但是它们都有着一定的局限性。提出一种新的基于群体增量学习(Population Based Incremental Learning)算法的文本特征选择方法,其特点是无需特征集的先验知识和容易实现,并且由于使用了简单分类器性能作为评价准则,计算复杂度很低。对Reuters-21578文本集的分类实验结果表明,该方法平均分类性能要优于卡方统计量、信息增益和简单遗传算法三种常用的特征选择方法。展开更多
文摘尽管目前存在许多文本特征选择方法,但是它们都有着一定的局限性。提出一种新的基于群体增量学习(Population Based Incremental Learning)算法的文本特征选择方法,其特点是无需特征集的先验知识和容易实现,并且由于使用了简单分类器性能作为评价准则,计算复杂度很低。对Reuters-21578文本集的分类实验结果表明,该方法平均分类性能要优于卡方统计量、信息增益和简单遗传算法三种常用的特征选择方法。