To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established b...To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.展开更多
The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMS...The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy.展开更多
Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and she...Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.展开更多
The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morpholo...The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
Morphology,distribution,composition,forming ability,structural stability and intrinsic mechanical properties of the intermetallic compounds(IMCs)formed in steel/aluminum laser welding were determined through scanning ...Morphology,distribution,composition,forming ability,structural stability and intrinsic mechanical properties of the intermetallic compounds(IMCs)formed in steel/aluminum laser welding were determined through scanning electron microscope,energy dispersive spectrometer,X-ray diffractometer and first-principles calculation.It was found that the mechanical properties of the joint are limited by the Fe−Al IMCs,whose brittleness is attributed to the orbital hybridization between Al(s),Al(p)and Fe(d).However,the joint properties are improved by adding interlayer,which is ascribed to some changes of electronic structure of the generated IMCs.The transition mechanism of IMCs changing from brittle to ductile is mainly due to the weak ability of interlayer elements to attract electrons.The mechanical properties of the joint are closely related to the ductility or brittleness of the IMCs.Moreover,the addition of Ti foil interlayer effectively improves the mechanical properties of the joints,which means that the experimental verification is in good agreement with the theoretical calculation predictions.展开更多
The effects of annealing treatments(ATs)on the microstructure of Zr-Sn-Nb alloy strips were studied.Based on the characteristics of strips for nuclear fuel assemblies,punching experiments were carried out and the form...The effects of annealing treatments(ATs)on the microstructure of Zr-Sn-Nb alloy strips were studied.Based on the characteristics of strips for nuclear fuel assemblies,punching experiments were carried out and the formability of zirconium alloy strips was quantitatively evaluated.The results indicate that the proportions of small-angle grain boundaries of the zirconium alloy under conditions of annealing treatment at 580°C(ATⅠ)and annealing treatment at 620°C(ATⅡ)are 14.3%and 23.2%,respectively,while that of the as-received material is 12.4%.And the forming limit margin fields of the zirconium alloy under ATⅠcan reach 0.43%,while the values of the as-received material and the ATⅡare-0.35%and-2.8%,respectively.The annealing process affects the evolution process of the strip recrystallization texture and the grain size.Moreover,the total texture and pole density are closely related to the degree of anisotropy of the strip.Besides,the small-angle grain boundary affects the strain path and crack expansion of the necking unit during the strip punching process,while the grain size affects the hardening exponent of the material.展开更多
The creep anisotropy behavior under different stresses at 180℃ of hot-extruded AZ91−2Y magnesium alloy with pre-compression(PC)and without pre-compression(NPC)was studied.Microstructure,texture and mechanical propert...The creep anisotropy behavior under different stresses at 180℃ of hot-extruded AZ91−2Y magnesium alloy with pre-compression(PC)and without pre-compression(NPC)was studied.Microstructure,texture and mechanical properties of the alloy were examined by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM)and tensile creep tests.The results revealed that the creep resistance was proportional to the volume fraction of spherical Mg_(17)Al_(12) precipitates.The dynamic precipitation of large volume fraction of lamellar Mg_(17)Al_(12) in NPC samples leads to the basaláañslip as the dominant creep mechanism,and the NPC samples have obvious anisotropy.In the PC samples,dynamic precipitation of large volume fraction of spherical Mg_(17)Al_(12) has inhibitory effect on the basaláañslip.The pyramidalác+añslip and twinning improve the creep anisotropy resistance significantly.展开更多
Creep deformation can be classified as homogeneous flow and inhomogeneous flow in bulk metallic glass(BMG).In order to understand the conversion conditions of the two types of creep deformation,the effect of loading r...Creep deformation can be classified as homogeneous flow and inhomogeneous flow in bulk metallic glass(BMG).In order to understand the conversion conditions of the two types of creep deformation,the effect of loading rate on the creep behavior of a Ti_(40)Zr_(10)Cu_(47)Sn_(3)(at.%)BMG at ambient temperature was investigated using nanoindentation and molecular dynamic simulation.Results indicate that at low loading rates,many serrations appear in loading stage,leading to inhomogeneous serrated flow in the creep stage.When the loading rate is high enough,the creep deformation tends to be homogeneous.The related mechanism responsible for the rate-dependent creep behavior is attributed to the number of pre-existing major shear bands which is influenced significantly by the loading rate.展开更多
基金Project(U1664252) supported by the National Natural Science Foundation of ChinaProjects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,China
文摘To solve the defects of bottom concave appearing in the extrusion experiments of complex hollow aluminium profiles,a 3D finite element model for simulating steady-state porthole die extrusion process was established based on HyperXtrude software using Arbitrary Lagrangian–Eulerian(ALE)algorithm.The velocity distribution on the cross-section of the extrudate at the die exit and pressure distribution at different heights in the welding chamber were quantitatively analyzed.To obtain an uniformity of metal flow velocity at the die exit,the porthole die structure was optimized by adding baffle plates.After optimization,maximum displacement in the Y direction at the bottom of profile decreases from 1.1 to 0.15 mm,and the concave defects are remarkably improved.The research method provides an effective guidance for improving extrusion defects and optimizing the metal flow of complex hollow aluminium profiles during porthole die extrusion.
基金Projects(51774125,51674112)supported by the National Natural Science Foundation of ChinaProject(2018YFB1107905)supported by the National Key Research and Development Program of China。
文摘The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy.
基金Projects(U1664252,51605234)supported by the National Natural Science Foundation of ChinaProject(2016YFB0101700)supported by the National Key Research and Development Program of ChinaProject(31665004)supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.
基金Project(U1664252)supported by the National Natural Science Foundation of China
文摘The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
基金the National Natural Science Foundation of China(Nos.51674112,51774125).
文摘Morphology,distribution,composition,forming ability,structural stability and intrinsic mechanical properties of the intermetallic compounds(IMCs)formed in steel/aluminum laser welding were determined through scanning electron microscope,energy dispersive spectrometer,X-ray diffractometer and first-principles calculation.It was found that the mechanical properties of the joint are limited by the Fe−Al IMCs,whose brittleness is attributed to the orbital hybridization between Al(s),Al(p)and Fe(d).However,the joint properties are improved by adding interlayer,which is ascribed to some changes of electronic structure of the generated IMCs.The transition mechanism of IMCs changing from brittle to ductile is mainly due to the weak ability of interlayer elements to attract electrons.The mechanical properties of the joint are closely related to the ductility or brittleness of the IMCs.Moreover,the addition of Ti foil interlayer effectively improves the mechanical properties of the joints,which means that the experimental verification is in good agreement with the theoretical calculation predictions.
文摘The effects of annealing treatments(ATs)on the microstructure of Zr-Sn-Nb alloy strips were studied.Based on the characteristics of strips for nuclear fuel assemblies,punching experiments were carried out and the formability of zirconium alloy strips was quantitatively evaluated.The results indicate that the proportions of small-angle grain boundaries of the zirconium alloy under conditions of annealing treatment at 580°C(ATⅠ)and annealing treatment at 620°C(ATⅡ)are 14.3%and 23.2%,respectively,while that of the as-received material is 12.4%.And the forming limit margin fields of the zirconium alloy under ATⅠcan reach 0.43%,while the values of the as-received material and the ATⅡare-0.35%and-2.8%,respectively.The annealing process affects the evolution process of the strip recrystallization texture and the grain size.Moreover,the total texture and pole density are closely related to the degree of anisotropy of the strip.Besides,the small-angle grain boundary affects the strain path and crack expansion of the necking unit during the strip punching process,while the grain size affects the hardening exponent of the material.
基金the National Natural Science Foundation of China(Nos.52075048,52171099 and 52105140)the Natural Science Foundation of Hunan Province,China(No.2021JJ40583)+2 种基金the Science and Technology Innovation Project of Hunan Province,China(No.2018RS3073)the Scientific Research Innovation Project for Graduate Student of Changsha University of Science&Technology,China(No.CX2021SS55)the Double First-class Scientific Research International Cooperation Project of Changsha University of Science and Technology,China(No.2019IC15).
文摘The creep anisotropy behavior under different stresses at 180℃ of hot-extruded AZ91−2Y magnesium alloy with pre-compression(PC)and without pre-compression(NPC)was studied.Microstructure,texture and mechanical properties of the alloy were examined by scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM)and tensile creep tests.The results revealed that the creep resistance was proportional to the volume fraction of spherical Mg_(17)Al_(12) precipitates.The dynamic precipitation of large volume fraction of lamellar Mg_(17)Al_(12) in NPC samples leads to the basaláañslip as the dominant creep mechanism,and the NPC samples have obvious anisotropy.In the PC samples,dynamic precipitation of large volume fraction of spherical Mg_(17)Al_(12) has inhibitory effect on the basaláañslip.The pyramidalác+añslip and twinning improve the creep anisotropy resistance significantly.
基金supported by the National Key Research and Development Program of China(No.2016YFB1100103)the National Natural Science Foundation of China(No.51771233)+2 种基金Key Research and Development Program of Hunan Province,China(No.2016JC2003)China Postdoctoral Science Foundation(No.2018M633164)Fundamental Research Funds for the Central Universities of Central South University,China(Nos.2018ZZTS127,CX20190190,2019ZZTS134)。
文摘Creep deformation can be classified as homogeneous flow and inhomogeneous flow in bulk metallic glass(BMG).In order to understand the conversion conditions of the two types of creep deformation,the effect of loading rate on the creep behavior of a Ti_(40)Zr_(10)Cu_(47)Sn_(3)(at.%)BMG at ambient temperature was investigated using nanoindentation and molecular dynamic simulation.Results indicate that at low loading rates,many serrations appear in loading stage,leading to inhomogeneous serrated flow in the creep stage.When the loading rate is high enough,the creep deformation tends to be homogeneous.The related mechanism responsible for the rate-dependent creep behavior is attributed to the number of pre-existing major shear bands which is influenced significantly by the loading rate.