期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
学习人类控制策略的双足机器人步态控制研究
1
作者 何志 谭建豪 《计算机工程与应用》 CSCD 2014年第5期234-238,共5页
针对双足机器人面临的复杂环境下动态行走的适应性难题,提出了一种基于学习人类控制策略的双足机器人步态控制方法。利用三维线性倒立摆模型构造双足行走系统的状态方程,建立学习人类控制策略的参数化模型,设计了基于SVM的学习型控制器... 针对双足机器人面临的复杂环境下动态行走的适应性难题,提出了一种基于学习人类控制策略的双足机器人步态控制方法。利用三维线性倒立摆模型构造双足行走系统的状态方程,建立学习人类控制策略的参数化模型,设计了基于SVM的学习型控制器。该方法保证了躯干始终处于与地面近似垂直,增强了步态控制的鲁棒性,提高了双足机器人在复杂环境下行走的动态稳定性。实验验证了该方法的有效性。 展开更多
关键词 双足机器人 步态控制 支持向量机(SVM) 人类控制策略
下载PDF
基于自适应特征融合的压缩感知跟踪算法 被引量:4
2
作者 唐宇 凌志刚 +1 位作者 李建成 白璐 《计算机工程与应用》 CSCD 北大核心 2015年第10期160-165,共6页
针对运动目标外观或背景变化较大时,采用基于压缩感知的跟踪算法由于特征单一易导致漂移、跟踪不稳定甚至丢失目标等问题,提出了改进的基于自适应特征融合的压缩感知跟踪算法。该算法采用两种随机测量矩阵,分别投影V、H空间得到压缩后... 针对运动目标外观或背景变化较大时,采用基于压缩感知的跟踪算法由于特征单一易导致漂移、跟踪不稳定甚至丢失目标等问题,提出了改进的基于自适应特征融合的压缩感知跟踪算法。该算法采用两种随机测量矩阵,分别投影V、H空间得到压缩后的纹理和颜色特征,利用在线计算的特征可靠性相对程度来自适应调整特征加权系数,充分利用两类特征的互补性来增强跟踪稳定性。对不同视频的测试结果表明,提出的方法在目标外观、背景环境变化时仍能准确跟踪目标,在目标大小为70像素×100像素时平均帧率为22帧/s,达到实时性。与提取单一特征的原压缩感知算法相比,改进后的方法在目标外观和背景变化时具有更强的鲁棒性。 展开更多
关键词 目标跟踪 压缩感知 特征融合 实时跟踪
下载PDF
基于WiFi指纹的层级学习室内定位模型 被引量:8
3
作者 薛敏 孙炜 +1 位作者 余洪山 张星 《电子测量与仪器学报》 CSCD 北大核心 2021年第4期118-126,共9页
随着物联网和信息技术的飞速发展,基于移动位置的服务近年来日益受到关注,同时也促进了室内定位技术的发展。基于WiFi指纹的室内定位技术以其部署广泛、成本低廉等优点受到了学术界的广泛研究。针对移动设备在室内环境中的定位问题,提... 随着物联网和信息技术的飞速发展,基于移动位置的服务近年来日益受到关注,同时也促进了室内定位技术的发展。基于WiFi指纹的室内定位技术以其部署广泛、成本低廉等优点受到了学术界的广泛研究。针对移动设备在室内环境中的定位问题,提出了一种层级学习室内定位系统(hierarchical deep learning indoor localization framework,HDLIL)。为获取和学习可靠的指纹特征,采用基于变分自编码(variational autoencoder,VAE)的特征提取模块来表征训练数据的潜在表示。通过构建多层神经网络来分析输入特征与位置输出之间的关系,并在输出层连接Softmax分类器,预测移动设备的位置。在定位阶段,移动设备接收测试数据并发送定位请求,然后通过加载HDLIL估计该测试指纹的位置。最后通过实验对HDLIL的定位性能进行了评估,讨论了不同定位因素对结果的影响,验证了该定位算法的精度及鲁棒性。 展开更多
关键词 位置管理 WiFi指纹 室内定位 层级学习模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部