针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据...针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据源,通过相关性分析,选取与LAI相关性高的植被指数作为反演因子,构建多元线性回归模型定量反演植被LAI并进行精度评定。结果表明:与LAI显著相关的RVI、DVI、GNDVI、MSAVI这4种植被指数作为反演因子,结合本文提出的组合模型反演LAI,模型预测决定系数R2为0.7086,均方根误差RMSE为0.3021,精度整体较高。该组合方法可较好地用于反演针叶-阔叶混交林植被LAI,为南方地区混交林LAI的研究提供新思路。展开更多
为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯—马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式...为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯—马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识.首先,基于Bayesian概率理论,建立不同建模数据集的先验分布以及已有地质知识似然函数约束;其次,使用MCMC随机采样的方法对先验参数的后验概率空间进行采样,获得大量既满足建模数据先验分布、又符合已有地质知识似然约束的建模数据样本;再次,由重新计算的建模数据样本集采用Cokriging插值算法获得一系列模型实现,获得符合已有地质知识的三维地质模型;最后,相比确定性三维地质建模方法,Bayesian-MCMC概率性建模框架可得到一系列模型实现,同时采用信息熵对模型的不确定性进行评价.以桂西南地区凌念—那茶地区为例,采用本文构建的Bayesian-MCMC概率性推断框架,考虑地层、断层采样点及产状数据的不确定性,由已知的地层厚度、地层倾角和断层倾角等地质知识对三维地质模型进行优化,结果表明该方法既能重建地质体的三维空间形态,又可降低三维地质模型的不确定性,为地质学家通过已有地质知识来降低三维地质模型的不确定性提供了有效的途径.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.42072326,41772348)the National Key Research and Development Program,China(No.2019YFC1805905).
文摘针对南方丘陵地区针叶-阔叶混交林植被叶面积指数(leaf area index,LAI)反演精度低且研究较少的问题,本文提出了一种GLIBERTY-DSAIL耦合模型组合多元线性回归反演LAI的方法。本研究以GLIBERTY-DSAIL模型模拟光谱和植被实测高光谱为数据源,通过相关性分析,选取与LAI相关性高的植被指数作为反演因子,构建多元线性回归模型定量反演植被LAI并进行精度评定。结果表明:与LAI显著相关的RVI、DVI、GNDVI、MSAVI这4种植被指数作为反演因子,结合本文提出的组合模型反演LAI,模型预测决定系数R2为0.7086,均方根误差RMSE为0.3021,精度整体较高。该组合方法可较好地用于反演针叶-阔叶混交林植被LAI,为南方地区混交林LAI的研究提供新思路。
文摘为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯—马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识.首先,基于Bayesian概率理论,建立不同建模数据集的先验分布以及已有地质知识似然函数约束;其次,使用MCMC随机采样的方法对先验参数的后验概率空间进行采样,获得大量既满足建模数据先验分布、又符合已有地质知识似然约束的建模数据样本;再次,由重新计算的建模数据样本集采用Cokriging插值算法获得一系列模型实现,获得符合已有地质知识的三维地质模型;最后,相比确定性三维地质建模方法,Bayesian-MCMC概率性建模框架可得到一系列模型实现,同时采用信息熵对模型的不确定性进行评价.以桂西南地区凌念—那茶地区为例,采用本文构建的Bayesian-MCMC概率性推断框架,考虑地层、断层采样点及产状数据的不确定性,由已知的地层厚度、地层倾角和断层倾角等地质知识对三维地质模型进行优化,结果表明该方法既能重建地质体的三维空间形态,又可降低三维地质模型的不确定性,为地质学家通过已有地质知识来降低三维地质模型的不确定性提供了有效的途径.