A versatile phase transformation strategy was proposed to synthesize novel BiVO4 nanosheets(NSs)@WO3 nanorod(NR)and nanoplate(NP)arrays films.The strategy was carried out by following a three-step hydrothermal process...A versatile phase transformation strategy was proposed to synthesize novel BiVO4 nanosheets(NSs)@WO3 nanorod(NR)and nanoplate(NP)arrays films.The strategy was carried out by following a three-step hydrothermal process(WO3→WO3/Bi2WO6→WO3/BiVO4).According to the characterization results,plenty of BiVO4 NSs grew well on the surface of WO3 NR and NP arrays films,thus forming the WO3/BiVO4 heterojunction structure.The prepared WO3/BiVO4 heterojunction films were used as the photoanodes for the photoelectrochemical(PEC)water splitting.As indicated by the results,the photoanodes exhibited an excellent PEC activity.The photocurrent densities of the WO3/BiVO4 NR and NP photoanodes at 1.23 V(vs RHE)without cocatalyst under visible light illumination reached up to about 1.56 and 1.20 mA/cm2,respectively.展开更多
The quest for innovative hydrogen-bond donor(HBD)catalysts has led to a significant advancement in the field of organic synthesis.Considering the electron-withdrawing strength of imidazolium cations and the spatial re...The quest for innovative hydrogen-bond donor(HBD)catalysts has led to a significant advancement in the field of organic synthesis.Considering the electron-withdrawing strength of imidazolium cations and the spatial requirements of hydrogen bond donors,a novel HBD catalyst based on the 1,1'-methylenediimidazolium scaffold by bridging two imidazolium cations with methylene was developed.The 1,1'-methylenediimidazolium-based catalysts exhibit excellent performance in the cycloaddition reaction of CO_(2) and epoxides,achieving up to 99% yield and 99%selectivity under mild conditions(atmospheric pressure,80℃ for 12 h,with 1 mol%catalyst).The geometric structure,atomic charge distribution,and synergistic effect of HBD catalysts were studied in detail through 1H NMR spectroscopy and density functional theory(DFT)calculations.The research results indicate that the protons at positions C2-H,C2'-H,C5-H,and C5'-H on the imidazolium rings,as well as the protons on the bridged methylene,contribute to the formation of multiple hydrogen bonds with appropriate distance and synergistic effects,which are crucial for activating CO_(2) and epoxides.This research highlights the distinctive attributes of 1,1'-methylenediimidazolium-based catalysts and offers valuable insights into the development of highly efficient multiple HBD catalysts.展开更多
Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical c...Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(21808051,51904356,21703062).
文摘A versatile phase transformation strategy was proposed to synthesize novel BiVO4 nanosheets(NSs)@WO3 nanorod(NR)and nanoplate(NP)arrays films.The strategy was carried out by following a three-step hydrothermal process(WO3→WO3/Bi2WO6→WO3/BiVO4).According to the characterization results,plenty of BiVO4 NSs grew well on the surface of WO3 NR and NP arrays films,thus forming the WO3/BiVO4 heterojunction structure.The prepared WO3/BiVO4 heterojunction films were used as the photoanodes for the photoelectrochemical(PEC)water splitting.As indicated by the results,the photoanodes exhibited an excellent PEC activity.The photocurrent densities of the WO3/BiVO4 NR and NP photoanodes at 1.23 V(vs RHE)without cocatalyst under visible light illumination reached up to about 1.56 and 1.20 mA/cm2,respectively.
文摘The quest for innovative hydrogen-bond donor(HBD)catalysts has led to a significant advancement in the field of organic synthesis.Considering the electron-withdrawing strength of imidazolium cations and the spatial requirements of hydrogen bond donors,a novel HBD catalyst based on the 1,1'-methylenediimidazolium scaffold by bridging two imidazolium cations with methylene was developed.The 1,1'-methylenediimidazolium-based catalysts exhibit excellent performance in the cycloaddition reaction of CO_(2) and epoxides,achieving up to 99% yield and 99%selectivity under mild conditions(atmospheric pressure,80℃ for 12 h,with 1 mol%catalyst).The geometric structure,atomic charge distribution,and synergistic effect of HBD catalysts were studied in detail through 1H NMR spectroscopy and density functional theory(DFT)calculations.The research results indicate that the protons at positions C2-H,C2'-H,C5-H,and C5'-H on the imidazolium rings,as well as the protons on the bridged methylene,contribute to the formation of multiple hydrogen bonds with appropriate distance and synergistic effects,which are crucial for activating CO_(2) and epoxides.This research highlights the distinctive attributes of 1,1'-methylenediimidazolium-based catalysts and offers valuable insights into the development of highly efficient multiple HBD catalysts.
基金supported by the Natural Science Foundation of Anhui Province(No.2208085J01 and No.2208085QA28).
文摘Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.