目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法...目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。展开更多
为了给数控机床故障的精准诊断提供保障,延长数控机床使用周期,以数控机床历史维修记录为研究对象,对数控机床设备故障领域的命名实体识别进行了研究.在分析历史维修记录中的故障描述特点后,提出了一种基于双向长短期记忆网络(Bidirecti...为了给数控机床故障的精准诊断提供保障,延长数控机床使用周期,以数控机床历史维修记录为研究对象,对数控机床设备故障领域的命名实体识别进行了研究.在分析历史维修记录中的故障描述特点后,提出了一种基于双向长短期记忆网络(Bidirectional long short-term memory, BLSTM)与具有回路的条件随机场(Conditional random field with loop, L-CRF)相结合的命名实体识别方法.首先,对输入语句进行分词和标注,使用Word2vec中的Skip-gram模型对标注语料进行预训练,将其生成的字向量通过词嵌入层转化为字向量序列;然后,将字向量序列输入BLSTM学习长期依赖信息;最后将句子表达输入L-CRF获取全局最优序列.实验结果表明,该方法明显优于其他命名实体识别方法,为数控机床设备的智能检修与实时诊断任务打下了坚实的基础.展开更多
目的为了解决包装行业相关文本命名实体识别困难问题,提出在BiLSTM(Bidirectional Long Short-Term Memory)神经网络中加入注意力机制(Attention)和字词联合特征,构建一种基于注意力机制的BiLSTM深度学习模型(简称Attention-BiLSTM),以...目的为了解决包装行业相关文本命名实体识别困难问题,提出在BiLSTM(Bidirectional Long Short-Term Memory)神经网络中加入注意力机制(Attention)和字词联合特征,构建一种基于注意力机制的BiLSTM深度学习模型(简称Attention-BiLSTM),以识别包装命名实体。方法首先构建包装领域词典匹配包装语料中词语的类别特征,同时将包装语料转换为字特征和词特征联合的向量特征,并且在过程中加入POS(词性)信息。然后将以上特征联合馈送到BiLSTM网络,以获取文本的全局特征,并利用注意力机制获取局部特征。最后根据文本的全局特征和局部特征使用CRF(Conditional Random Field)解码整个句子的最优标注序列。结果通过对《中国包装网》新闻数据集的实验,获得了85.6%的F值。结论所提方法在包装命名实体识别中优于传统方法。展开更多
文摘目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。
文摘为了给数控机床故障的精准诊断提供保障,延长数控机床使用周期,以数控机床历史维修记录为研究对象,对数控机床设备故障领域的命名实体识别进行了研究.在分析历史维修记录中的故障描述特点后,提出了一种基于双向长短期记忆网络(Bidirectional long short-term memory, BLSTM)与具有回路的条件随机场(Conditional random field with loop, L-CRF)相结合的命名实体识别方法.首先,对输入语句进行分词和标注,使用Word2vec中的Skip-gram模型对标注语料进行预训练,将其生成的字向量通过词嵌入层转化为字向量序列;然后,将字向量序列输入BLSTM学习长期依赖信息;最后将句子表达输入L-CRF获取全局最优序列.实验结果表明,该方法明显优于其他命名实体识别方法,为数控机床设备的智能检修与实时诊断任务打下了坚实的基础.
文摘目的为了解决包装行业相关文本命名实体识别困难问题,提出在BiLSTM(Bidirectional Long Short-Term Memory)神经网络中加入注意力机制(Attention)和字词联合特征,构建一种基于注意力机制的BiLSTM深度学习模型(简称Attention-BiLSTM),以识别包装命名实体。方法首先构建包装领域词典匹配包装语料中词语的类别特征,同时将包装语料转换为字特征和词特征联合的向量特征,并且在过程中加入POS(词性)信息。然后将以上特征联合馈送到BiLSTM网络,以获取文本的全局特征,并利用注意力机制获取局部特征。最后根据文本的全局特征和局部特征使用CRF(Conditional Random Field)解码整个句子的最优标注序列。结果通过对《中国包装网》新闻数据集的实验,获得了85.6%的F值。结论所提方法在包装命名实体识别中优于传统方法。