期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进U-net网络模型的综采工作面煤岩识别方法 被引量:28
1
作者 司垒 王忠宾 +1 位作者 熊祥祥 谭超 《煤炭学报》 EI CAS CSCD 北大核心 2021年第S01期578-589,共12页
煤岩识别是实现工作面智能化开采的核心技术,也是煤炭开采领域的技术难题。针对当前综采工作面煤岩识别精度低的问题,提出了一种基于改进U-net网络模型的煤岩图像识别方法。该方法通过使用深度分离卷积代替传统卷积减少了网络模型的参数... 煤岩识别是实现工作面智能化开采的核心技术,也是煤炭开采领域的技术难题。针对当前综采工作面煤岩识别精度低的问题,提出了一种基于改进U-net网络模型的煤岩图像识别方法。该方法通过使用深度分离卷积代替传统卷积减少了网络模型的参数,提高了语义分割的效率;添加Res2net模块来提高编码器提取特征的能力,同时加入条件随机场对分割图像进行后处理,提高了网络模型在分割煤岩图像交界区域的精确性。为了获取更加丰富的煤岩分布图像,研制了不同特性的煤岩试样,搭建了采煤机煤岩截割试验台。通过煤岩截割试验获取了煤岩分布图像数据,并对其进行切分、缩放、旋转、裁剪、加噪声等操作,生成了包含8000个样本的煤岩图像语义分割数据集,采用自适应学习算法对模型进行训练,给出了模型训练过程中准确率和损失函数的变化规律。选取像素准确度和交并比对语义分割结果进行评估,结果表明,改进U-net网络模型的像素准确度和交并比的平均值分别为95.81%和91.13%,所占内存为35 M,测试用时为36.45 ms/张,与其他网络模型相比,该方法在煤岩图像分割中具有明显的优越性。在井下现场试验中,通过构建综采工作面煤岩图像语义分割数据集对改进U-net网络模型进行训练和测试,最后实现了综采工作面的煤岩识别,验证了该方法的可行性和实用性。 展开更多
关键词 煤岩识别 语义分割 深度学习 U-net网络模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部