面向bilibili短视频评论数据的情感分析,旨在挖掘视频观看者对短视频的看法,使视频作者也可以快速得到自己想要的评价,进而对后续作品做出改进。针对短视频评论更新快、词汇新颖、评论过长、一词多义等因素造成的短视频评论情感分析准...面向bilibili短视频评论数据的情感分析,旨在挖掘视频观看者对短视频的看法,使视频作者也可以快速得到自己想要的评价,进而对后续作品做出改进。针对短视频评论更新快、词汇新颖、评论过长、一词多义等因素造成的短视频评论情感分析准确率低的问题,文章构建了bilibili短视频评论数据集,并提出了ELMO(Embedding From Language Model)用以构建动态词向量解决一词多义及新词的问题,通过构建TextCNN和Reformer双通道神经网络结构来提取局部、全局特征。由于Reformer采用了局部敏感哈希的特殊注意力机制,更能联系全局特征,之后将两者得到的结果拼接送入分类器得出情感分析的结果,并将得出的结果与多个深度学习模型进行对比。展开更多
文摘面向bilibili短视频评论数据的情感分析,旨在挖掘视频观看者对短视频的看法,使视频作者也可以快速得到自己想要的评价,进而对后续作品做出改进。针对短视频评论更新快、词汇新颖、评论过长、一词多义等因素造成的短视频评论情感分析准确率低的问题,文章构建了bilibili短视频评论数据集,并提出了ELMO(Embedding From Language Model)用以构建动态词向量解决一词多义及新词的问题,通过构建TextCNN和Reformer双通道神经网络结构来提取局部、全局特征。由于Reformer采用了局部敏感哈希的特殊注意力机制,更能联系全局特征,之后将两者得到的结果拼接送入分类器得出情感分析的结果,并将得出的结果与多个深度学习模型进行对比。