期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
异构环境感知的分布式神经网络训练模型
1
作者 咸琳涛 刘晓兰 +1 位作者 王淦 刘建明 《计算机工程与设计》 北大核心 2024年第9期2821-2827,共7页
针对分布式神经网络训练在异构环境中训练速度慢、资源利用率低的问题,提出一种异构环境感知的分布式神经网络训练模型(H-PS)。根据计算节点当前状态动态调度训练任务,使计算节点能够在相同时间完成训练任务,提高资源利用率。提出通信... 针对分布式神经网络训练在异构环境中训练速度慢、资源利用率低的问题,提出一种异构环境感知的分布式神经网络训练模型(H-PS)。根据计算节点当前状态动态调度训练任务,使计算节点能够在相同时间完成训练任务,提高资源利用率。提出通信与计算并行策略,参数服务器与计算节点传输模型参数期间,计算节点持续模型计算,进一步提高资源利用率。使用灵活的量化策略,压缩神经网络模型参数,减少参数服务器与计算节点的通信开销。使用新兴的容器集群进行实验,结果表明,与现有方法相比,H-PS训练时间缩短1.4~3.5倍。 展开更多
关键词 分布式机器学习 异构环境 任务动态规划 通信与计算并行 参数动态量化 深度神经网络 容器集群
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部