期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于广义回归神经网络与遗传算法的煤灰熔点优化 被引量:9
1
作者 石喜光 郑立刚 +3 位作者 周昊 陈习珍 邱坤赞 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第8期1189-1192,1242,共5页
考虑固态和液态排渣锅炉对煤灰熔点的不同要求,采用广义回归神经网络建立了煤灰软化温度模型.神经网络的输入变量为7个,即煤灰中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2、Na2O&K2O的质量分数.以煤灰软化温度作为目标函数,采用遗传算法... 考虑固态和液态排渣锅炉对煤灰熔点的不同要求,采用广义回归神经网络建立了煤灰软化温度模型.神经网络的输入变量为7个,即煤灰中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2、Na2O&K2O的质量分数.以煤灰软化温度作为目标函数,采用遗传算法寻优计算获得当煤灰软化温度最高和最低时煤灰中氧化物的组成.广义回归神经网络仅需30个训练样本,最大和平均相对误差分别为21.8%和1.55%.优化结果表明,掺烧高钙煤或者向燃煤中添加石灰石等富含Ca的原料可以降低煤灰熔点;而增加Al2O3的质量分数可以提高煤灰熔点. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部