为了提高聚能战斗部对水中目标的毁伤威力,提出形成串联爆炸成型弹丸(Explosively Formed Projectile,EFP)的组合药型罩战斗部结构。利用平板抛掷和圆筒压垮公式建立组合药型罩EFP速度分析模型,并使用AUTODYN-2D软件对EFP成型和入水毁...为了提高聚能战斗部对水中目标的毁伤威力,提出形成串联爆炸成型弹丸(Explosively Formed Projectile,EFP)的组合药型罩战斗部结构。利用平板抛掷和圆筒压垮公式建立组合药型罩EFP速度分析模型,并使用AUTODYN-2D软件对EFP成型和入水毁伤过程进行数值模拟,研究组合药型罩结构参数对串联EFP成型的影响,证明其在水中高效的侵彻性能。研究结果表明:理论与数值模拟计算得到的EFP速度基本吻合,最大误差不超过10%;组合药型罩分离形成串联EFP是由于内外罩不同的材料和结构组合使罩微元从接触面处开始形成较大的速度差所引起的;随着内罩直径的增大,内外罩形成的EFP速度同时减小,长径比分别增大与减小;单独增大内外罩外曲率半径与罩顶壁厚,对应罩成型的EFP性能变化规律和单一药型罩相同,但另一罩成型EFP的长径比均减小或分别减小与增大,速度变化幅度较小;组合药型罩串联EFP侵彻4倍装药直径的水后,动能衰减率较双层药型罩降低21.55%,剩余速度提高5.77%,且随着侵彻距离的增加该差距进一步扩大。展开更多
世界范围内,高张力键能材料如离子氮、全氮、聚合氮(Chong ZHANG,Cheng-guo SUN,Bing-cheng HU,et al. Synthesis and characterization of the pentazolateanion cyclo-N5-in(N5)6(H3O)3(NH4)4Cl[J]. Science,2017,335(6323):374-376;Y...世界范围内,高张力键能材料如离子氮、全氮、聚合氮(Chong ZHANG,Cheng-guo SUN,Bing-cheng HU,et al. Synthesis and characterization of the pentazolateanion cyclo-N5-in(N5)6(H3O)3(NH4)4Cl[J]. Science,2017,335(6323):374-376;Yuan-gang XU,Qian WANG,Cheng SHEN,et al. A series of energetic metal pentazolatehydrates [J]. Nature,DOI:10.1038/nature23662)、金属氢(Brent Grocholski. Staming hydrogen into metal[J]. Science,2017,335(6326):706)等颠覆性含能材料的合成与表征仍处于探索阶段,近期难以工程化应用,“采用新型毁伤机理或模式,实现新效应毁伤”则成为常规毁伤技术的重点发展方向(宋浦,肖川.常规毁伤的新发展——超强毁伤技术[J].含能材料,2018,26(6):462-463)。展开更多
文摘为了提高聚能战斗部对水中目标的毁伤威力,提出形成串联爆炸成型弹丸(Explosively Formed Projectile,EFP)的组合药型罩战斗部结构。利用平板抛掷和圆筒压垮公式建立组合药型罩EFP速度分析模型,并使用AUTODYN-2D软件对EFP成型和入水毁伤过程进行数值模拟,研究组合药型罩结构参数对串联EFP成型的影响,证明其在水中高效的侵彻性能。研究结果表明:理论与数值模拟计算得到的EFP速度基本吻合,最大误差不超过10%;组合药型罩分离形成串联EFP是由于内外罩不同的材料和结构组合使罩微元从接触面处开始形成较大的速度差所引起的;随着内罩直径的增大,内外罩形成的EFP速度同时减小,长径比分别增大与减小;单独增大内外罩外曲率半径与罩顶壁厚,对应罩成型的EFP性能变化规律和单一药型罩相同,但另一罩成型EFP的长径比均减小或分别减小与增大,速度变化幅度较小;组合药型罩串联EFP侵彻4倍装药直径的水后,动能衰减率较双层药型罩降低21.55%,剩余速度提高5.77%,且随着侵彻距离的增加该差距进一步扩大。
文摘世界范围内,高张力键能材料如离子氮、全氮、聚合氮(Chong ZHANG,Cheng-guo SUN,Bing-cheng HU,et al. Synthesis and characterization of the pentazolateanion cyclo-N5-in(N5)6(H3O)3(NH4)4Cl[J]. Science,2017,335(6323):374-376;Yuan-gang XU,Qian WANG,Cheng SHEN,et al. A series of energetic metal pentazolatehydrates [J]. Nature,DOI:10.1038/nature23662)、金属氢(Brent Grocholski. Staming hydrogen into metal[J]. Science,2017,335(6326):706)等颠覆性含能材料的合成与表征仍处于探索阶段,近期难以工程化应用,“采用新型毁伤机理或模式,实现新效应毁伤”则成为常规毁伤技术的重点发展方向(宋浦,肖川.常规毁伤的新发展——超强毁伤技术[J].含能材料,2018,26(6):462-463)。