Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase c...Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase content and morphology on the mechanical properties of the GH4169 alloy plates,are studied.The results demonstrate that coldrolling can promote the precipitation of theδphase and its transformation from theδ-Ni3Nb phase to theδ-NbNi4 phase.The comprehensive properties of the alloy are better when the heat treatment time is 1 h,with 132 MPa increase in the tensile strength and only 2.9%decrease in the elongation relative to those of the original material.The mechanical properties of the alloy are shown to change greatly with the change in theδ-phase morphology.展开更多
An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification p...An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.展开更多
ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologie...ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.展开更多
The deformation behavior and microstructure of the Zr50Ti50 alloy in β phase field were investigated by isothermal compression tests at temperatures ranging from 700 to 850 °C and strain rates ranging from 0.001...The deformation behavior and microstructure of the Zr50Ti50 alloy in β phase field were investigated by isothermal compression tests at temperatures ranging from 700 to 850 °C and strain rates ranging from 0.001 to 1 s?1. The flow curves exhibited typical flow softening. The initial discontinuous yielding behavior was observed at higher strain rates, which was not found in other traditional Zr alloys. The apparent deformation activation energy was calculated to be 103 kJ/mol and constitutive equationdescribing the flow stress as a function of the strain rate and deformation temperature was proposed. The analysis indicated that the hot deformation mechanism was mainly dominated by dynamic recovery. However, dynamic recrystallization was delayed by dynamic recovery. Thereafter, the processing map was calculated to evaluate the efficiency of the forging process at the temperatures and strain rates investigated and to optimize processing parameters of hot deformation. The optimum processing parameters were found to be 830?850 °C and 0.56?1 s?1 for hot the deformation of Zr50Ti50 alloy in the β phase region.展开更多
基金Project(E2019203005)supported by the Natural Science Foundation of Hebei Province,China。
文摘Cold rolling and heat-treatment were used for the grain refinement of GH4169 superalloy plate.The effects of cold rolling reduction ratio and heat-treatment time on the precipitatedδphase,and the effects ofδ-phase content and morphology on the mechanical properties of the GH4169 alloy plates,are studied.The results demonstrate that coldrolling can promote the precipitation of theδphase and its transformation from theδ-Ni3Nb phase to theδ-NbNi4 phase.The comprehensive properties of the alloy are better when the heat treatment time is 1 h,with 132 MPa increase in the tensile strength and only 2.9%decrease in the elongation relative to those of the original material.The mechanical properties of the alloy are shown to change greatly with the change in theδ-phase morphology.
基金the National Natural Science Foundation of China(Nos.52071278,51827801)the National Key Research and Development Program of China(No.2018YFA0703603)the Hebei Normal University of Science&Technology,China(No.2021YB012).
文摘An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.
基金Projects(51671166,51434008)supported by the National Natural Science Foundation of ChinaProject(2013CB733000)supported by the National Basic Research Program of China
文摘ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.
基金Project(2013CB73300)supported by the National Basic Research Program of ChinaProjects(51531005,51434008,51571174)supported by the National Natural Science Foundation of China
文摘The deformation behavior and microstructure of the Zr50Ti50 alloy in β phase field were investigated by isothermal compression tests at temperatures ranging from 700 to 850 °C and strain rates ranging from 0.001 to 1 s?1. The flow curves exhibited typical flow softening. The initial discontinuous yielding behavior was observed at higher strain rates, which was not found in other traditional Zr alloys. The apparent deformation activation energy was calculated to be 103 kJ/mol and constitutive equationdescribing the flow stress as a function of the strain rate and deformation temperature was proposed. The analysis indicated that the hot deformation mechanism was mainly dominated by dynamic recovery. However, dynamic recrystallization was delayed by dynamic recovery. Thereafter, the processing map was calculated to evaluate the efficiency of the forging process at the temperatures and strain rates investigated and to optimize processing parameters of hot deformation. The optimum processing parameters were found to be 830?850 °C and 0.56?1 s?1 for hot the deformation of Zr50Ti50 alloy in the β phase region.