文摘针对传统BP神经网络估算电池SOC过程中,存在初始权值和阈值对预测精度影响较大的问题,引入Tent混沌映射和自适应收敛因子对灰狼算法(GWO)进行改进,改善灰狼算法易陷入局部最优、后期迭代效率不高的缺点。将改进灰狼算法(improved grey Wolf algorithm,IGWO)与BP神经网络模型结合,得到BP神经网络最优初始权值和阈值,提高预测精度和收敛速度。对锂电池充放电实验数据预处理,得到样本数据。利用MATLAB进行仿真验证,结果表明,IGWO-BP神经网络算法的预测精度相较于传统BP神经网络算法、GWO-BP神经网络算法更优,基于改进灰狼优化BP神经网络估算电池SOC的方法的绝对误差能控制在1.53%以内,有效提高了预测精度和收敛速度。