A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail fo...A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail for the step numbers from 0 to infinity.The critic electric field as the function of the geometry parameters and doping profile is derived.For the thick film device,linear doping profile can be replaced by a single or two steps doping profile in the drift region due to a considerable uniformly lateral electric field,almost ideal breakdown voltage,and simplified design and fabrication.The availability of the proposed model is verified by the good accordance among the analytical results,numerical simulations,and reported experiments.展开更多
This paper presents the total dose radiation performance of 0.8μm SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage curren...This paper presents the total dose radiation performance of 0.8μm SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage currents of transistors and standby currents of ASIC as functions of the total dose up to 500krad(Si). The experimental results show that the worst case threshold voltage shifts of front channels are less than 320mV for pMOS transistors under off-gate radiation bias at 1Mrad(Si) and less than 120mV for nMOS transistors under on-gate radiation bias. No significant radiation-induced leakage current is observed in transistors to 1Mrad (Si). The standby currents of ASIC are less than the specification of 5μA over the total dose range of 500krad(Si).展开更多
A new design concept is proposed to eliminate the substrate-assisted depletion effect that significantly degrades the breakdown voltage (BV) of conventional super junction-LDMOS. The key feature of the new concept i...A new design concept is proposed to eliminate the substrate-assisted depletion effect that significantly degrades the breakdown voltage (BV) of conventional super junction-LDMOS. The key feature of the new concept is that a partial buried layer is implemented which compensates for the charge interaction between the p-substrate and SJ region,realizing high breakdown voltage and low on-resistance. Numerical simulation results indicate that the proposed device features high breakdown voltage,low on-resistance,and reduced sensitivity to doping imbalance in the pillars. In addition, the proposed device is compatible with smart power technology.展开更多
提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。基于求解二维Poisson方程,此模型给出了二维表面电场和电势与器件结构参数和漏偏压关系的解析表达式;计算漂移区长度与击穿电压的关系,提出了一种优...提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。基于求解二维Poisson方程,此模型给出了二维表面电场和电势与器件结构参数和漏偏压关系的解析表达式;计算漂移区长度与击穿电压的关系,提出了一种优化高压器件的有效方法。解析结果与用MEDICI模拟的数值结果吻合较好,验证了模型的准确性,该模型可用于体硅RFPLDMOS的设计优化。展开更多
A new 2D analytical model for the surface electrical field distribution and optimization of bulk-silicon double RESURF devices is presented. Based on the solution to the 2D Poisson's equation, the model gives the inf...A new 2D analytical model for the surface electrical field distribution and optimization of bulk-silicon double RESURF devices is presented. Based on the solution to the 2D Poisson's equation, the model gives the influence on the surface electrical field of the drain bias and structure parameters such as the doping concentration,the depth and the position of the p-top region, the thickness and the doping concentration of the drift region, and the substrate doping concentration. The dependence of breakdown voltage on the length and doping concentration of the drift region is also calculated. Further more,an effective way to gain the optimum high-voltage is also proposed. All analytical results are verified by simulation results obtained by MEDICI and previous experimental data,showing the validity of the model presented here.展开更多
文摘A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail for the step numbers from 0 to infinity.The critic electric field as the function of the geometry parameters and doping profile is derived.For the thick film device,linear doping profile can be replaced by a single or two steps doping profile in the drift region due to a considerable uniformly lateral electric field,almost ideal breakdown voltage,and simplified design and fabrication.The availability of the proposed model is verified by the good accordance among the analytical results,numerical simulations,and reported experiments.
文摘This paper presents the total dose radiation performance of 0.8μm SOI CMOS devices fabricated with full dose SIMOX technology. The radiation performance is characterized by threshold voltage shifts and leakage currents of transistors and standby currents of ASIC as functions of the total dose up to 500krad(Si). The experimental results show that the worst case threshold voltage shifts of front channels are less than 320mV for pMOS transistors under off-gate radiation bias at 1Mrad(Si) and less than 120mV for nMOS transistors under on-gate radiation bias. No significant radiation-induced leakage current is observed in transistors to 1Mrad (Si). The standby currents of ASIC are less than the specification of 5μA over the total dose range of 500krad(Si).
文摘A new design concept is proposed to eliminate the substrate-assisted depletion effect that significantly degrades the breakdown voltage (BV) of conventional super junction-LDMOS. The key feature of the new concept is that a partial buried layer is implemented which compensates for the charge interaction between the p-substrate and SJ region,realizing high breakdown voltage and low on-resistance. Numerical simulation results indicate that the proposed device features high breakdown voltage,low on-resistance,and reduced sensitivity to doping imbalance in the pillars. In addition, the proposed device is compatible with smart power technology.
文摘提出具有电阻场板(Resistive field plate,RFP)硅基LDMOS表面电场和击穿电压解析模型。基于求解二维Poisson方程,此模型给出了二维表面电场和电势与器件结构参数和漏偏压关系的解析表达式;计算漂移区长度与击穿电压的关系,提出了一种优化高压器件的有效方法。解析结果与用MEDICI模拟的数值结果吻合较好,验证了模型的准确性,该模型可用于体硅RFPLDMOS的设计优化。
文摘A new 2D analytical model for the surface electrical field distribution and optimization of bulk-silicon double RESURF devices is presented. Based on the solution to the 2D Poisson's equation, the model gives the influence on the surface electrical field of the drain bias and structure parameters such as the doping concentration,the depth and the position of the p-top region, the thickness and the doping concentration of the drift region, and the substrate doping concentration. The dependence of breakdown voltage on the length and doping concentration of the drift region is also calculated. Further more,an effective way to gain the optimum high-voltage is also proposed. All analytical results are verified by simulation results obtained by MEDICI and previous experimental data,showing the validity of the model presented here.