期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于小波特征和多类支持向量机的病态语音识别方法
被引量:
3
1
作者
吴石
耶夫戈尼耶.伊万诺维奇
《计算机应用》
CSCD
北大核心
2008年第8期2097-2100,2116,共5页
研究一种应用小波特征向量和多类支持向量机进行病态语音识别的方法,该方法基于连续小波变换提取语音特征向量,利用多类支持向量机进行病态语音分类。为了简化二分类支持向量机进行多类分类时所带来的计算复杂性,根据一类支持向量机分...
研究一种应用小波特征向量和多类支持向量机进行病态语音识别的方法,该方法基于连续小波变换提取语音特征向量,利用多类支持向量机进行病态语音分类。为了简化二分类支持向量机进行多类分类时所带来的计算复杂性,根据一类支持向量机分类思想提出一种多类分类算法。该算法能够使每一类样本都独立地获得一个决策函数,通过决策函数的最大值来判断样本所属的类。实验表明,在病态语音识别系统中,多类支持向量机与小波特征向量相结合具有良好的识别效果和应用价值。
展开更多
关键词
病态语音识别
小波特征向量
一类支持向量机
多类支持向量机
下载PDF
职称材料
题名
基于小波特征和多类支持向量机的病态语音识别方法
被引量:
3
1
作者
吴石
耶夫戈尼耶.伊万诺维奇
机构
哈尔滨理工
大学
机械动力工程学院
白俄罗斯国立大学无线电物理系
出处
《计算机应用》
CSCD
北大核心
2008年第8期2097-2100,2116,共5页
文摘
研究一种应用小波特征向量和多类支持向量机进行病态语音识别的方法,该方法基于连续小波变换提取语音特征向量,利用多类支持向量机进行病态语音分类。为了简化二分类支持向量机进行多类分类时所带来的计算复杂性,根据一类支持向量机分类思想提出一种多类分类算法。该算法能够使每一类样本都独立地获得一个决策函数,通过决策函数的最大值来判断样本所属的类。实验表明,在病态语音识别系统中,多类支持向量机与小波特征向量相结合具有良好的识别效果和应用价值。
关键词
病态语音识别
小波特征向量
一类支持向量机
多类支持向量机
Keywords
pathological vocal detection
wavelets feature vector
one-class SVM
multi-class SVM
分类号
TP391.42 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于小波特征和多类支持向量机的病态语音识别方法
吴石
耶夫戈尼耶.伊万诺维奇
《计算机应用》
CSCD
北大核心
2008
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部