期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于预训练Transformer语言模型的源代码剽窃检测研究
1
作者 钱亮宏 王福德 孙晓海 《吉林大学学报(信息科学版)》 CAS 2024年第4期747-753,共7页
为解决源代码剽窃检测的问题,以及针对现有方法需要大量训练数据且受限于特定语言的不足,提出了一种基于预训练Transformer语言模型的源代码剽窃检测方法,其结合了词嵌入,相似度计算和分类模型。该方法支持多种编程语言,不需要任何标记... 为解决源代码剽窃检测的问题,以及针对现有方法需要大量训练数据且受限于特定语言的不足,提出了一种基于预训练Transformer语言模型的源代码剽窃检测方法,其结合了词嵌入,相似度计算和分类模型。该方法支持多种编程语言,不需要任何标记为剽窃的训练样本,即可达到较好的检测性能。实验结果表明,该方法在多个公开数据集上取得了先进的检测效果,F1值接近。同时,对特定的能获取到较少标记为剽窃训练样本的场景,还提出了一种结合有监督学习分类模型的方法,进一步提升了检测效果。该方法能广泛应用于缺乏训练数据、计算资源有限以及语言多样的源代码剽窃检测场景。 展开更多
关键词 源代码剽窃检测 TRANSFORMER 模型 预训练模型 机器学习 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部