A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
The fabrication of S-scheme heterojunctions with fast charge transfer and good interface contacts,such as intermolecularπ–πinteractions,is a promising approach to improve photocatalytic performance.A unique two-dim...The fabrication of S-scheme heterojunctions with fast charge transfer and good interface contacts,such as intermolecularπ–πinteractions,is a promising approach to improve photocatalytic performance.A unique two-dimensional/two-dimensional(2D/2D)S-scheme heterojunction containing TpPa-1-COF/g-C_(3)N_(4) nanosheets(denoted as TPCNNS)was developed.The established maximum interfacial interaction between TpPa-1-COF NS and g-C_(3)N_(4) NS may result in aπ–πconjugated heterointerface.Furthermore,the difference in the work functions of TpPa-1-COF and g-C_(3)N_(4) results in a large Fermi level gap,leading to upward/downward band edge bending.The spontaneous interfacial charge transfer from g-C_(3)N_(4) to TpPa-1-COF at theπ–πconjugated interface area results in the presence of a built-in electric field,according to the charge density difference analysis based on density functional theory calculations.Such an enhanced built-in electric field can efficiently drive directional charge migration via the S-scheme mechanism,which enhances charge separation and utilization.Thus,an approximately 2.8 and 5.6 times increase in the photocatalytic hydrogen evolution rate was recorded in TPCNNS-2(1153μmol g^(-1) h^(-1))compared to pristine TpPa-1-COF and g-C_(3)N_(4) NS,respectively,under visible light irradiation.Overall,this work opens new avenues in the fabrication of 2D/2Dπ–πconjugated S-scheme heterojunction photocatalysts with highly efficient hydrogen evolution performance.展开更多
Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐...Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐temperature range and tolerance to SO2 poisoning.In the present work,two series of Mo‐modified CeO_(2)catalysts were respectively obtained through a wet impregnation method(Mo‐CeO_(2))and a co‐precipitation method(MoCe‐cp),and the roles of the Mo species were systematically investigated.Activity tests showed that the Mo‐CeO_(2)catalyst displayed much higher NO conversion at low temperature and anti‐SO2 ability than MoCe‐cp.The optimal Mo‐CeO_(2)catalyst displayed over 80%NO elimination efficiency even at 150°C and remarkable SO2 resistance at 250°C(nearly no activity loss after 40 h test).The characterization results indicated that the introduced Mo species were highly dispersed on the Mo‐CeO_(2)catalyst surface,thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species.These factors synergistically promote the selective catalytic reduction(SCR)reaction in accordance with the Eley‐Rideal(E‐R)reaction path on the Mo‐CeO_(2)catalyst.Additionally,the molybdenum surface could protect CeO_(2)from SO2 poisoning;thus,the reducibility of the Mo‐CeO_(2)catalyst declined slightly to an adequate level after sulfation.The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium‐based SCR catalysts with superior SO2 durability.展开更多
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
文摘The fabrication of S-scheme heterojunctions with fast charge transfer and good interface contacts,such as intermolecularπ–πinteractions,is a promising approach to improve photocatalytic performance.A unique two-dimensional/two-dimensional(2D/2D)S-scheme heterojunction containing TpPa-1-COF/g-C_(3)N_(4) nanosheets(denoted as TPCNNS)was developed.The established maximum interfacial interaction between TpPa-1-COF NS and g-C_(3)N_(4) NS may result in aπ–πconjugated heterointerface.Furthermore,the difference in the work functions of TpPa-1-COF and g-C_(3)N_(4) results in a large Fermi level gap,leading to upward/downward band edge bending.The spontaneous interfacial charge transfer from g-C_(3)N_(4) to TpPa-1-COF at theπ–πconjugated interface area results in the presence of a built-in electric field,according to the charge density difference analysis based on density functional theory calculations.Such an enhanced built-in electric field can efficiently drive directional charge migration via the S-scheme mechanism,which enhances charge separation and utilization.Thus,an approximately 2.8 and 5.6 times increase in the photocatalytic hydrogen evolution rate was recorded in TPCNNS-2(1153μmol g^(-1) h^(-1))compared to pristine TpPa-1-COF and g-C_(3)N_(4) NS,respectively,under visible light irradiation.Overall,this work opens new avenues in the fabrication of 2D/2Dπ–πconjugated S-scheme heterojunction photocatalysts with highly efficient hydrogen evolution performance.
文摘Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐temperature range and tolerance to SO2 poisoning.In the present work,two series of Mo‐modified CeO_(2)catalysts were respectively obtained through a wet impregnation method(Mo‐CeO_(2))and a co‐precipitation method(MoCe‐cp),and the roles of the Mo species were systematically investigated.Activity tests showed that the Mo‐CeO_(2)catalyst displayed much higher NO conversion at low temperature and anti‐SO2 ability than MoCe‐cp.The optimal Mo‐CeO_(2)catalyst displayed over 80%NO elimination efficiency even at 150°C and remarkable SO2 resistance at 250°C(nearly no activity loss after 40 h test).The characterization results indicated that the introduced Mo species were highly dispersed on the Mo‐CeO_(2)catalyst surface,thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species.These factors synergistically promote the selective catalytic reduction(SCR)reaction in accordance with the Eley‐Rideal(E‐R)reaction path on the Mo‐CeO_(2)catalyst.Additionally,the molybdenum surface could protect CeO_(2)from SO2 poisoning;thus,the reducibility of the Mo‐CeO_(2)catalyst declined slightly to an adequate level after sulfation.The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium‐based SCR catalysts with superior SO2 durability.