为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimizati...为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。展开更多
针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法...针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。展开更多
文摘为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。
文摘针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。